

Washington, D.C.

Released December 10, 2009, by the National Agricultural Statistics Service (NASS), Agricultural Statistics Board, U.S. Department of Agriculture. For information on Crop Production call (202) 720-2127, office hours 7:30 a.m. to 4:00 p.m. ET.

All Cotton Production Up 1 Percent from November All Orange Production Down 1 percent from October

All Cotton production is forecast at 12.6 million 480 -pound bales, up 1 percent from last month but down 2 percent from last year. Upland cotton production is forecast at 12.2 million 480 -pound bales, up 1 percent from last month but down 1 percent from last year. Producers in the Southeast region are expecting increased yields due to ideal weather conditions for this year's late planted crop. Texas producers are also expecting higher yields. Upland growers in California, Georgia, Kansas, North Carolina, and Oklahoma are expecting record high yields. The American-Pima production forecast, at 367,000 bales, was carried forward from the August 2009 forecast.

The U.S. all orange forecast for the $2009-10$ season is 8.20 million tons, down 1 percent from the October 1 forecast and down 11 percent from the 2008-09 final utilization. The Florida all orange forecast, at 135 million boxes (6.08 million tons), is down 1 percent from the previous forecast and down 17 percent from last season's final utilization. Early, midseason, and navel varieties in Florida are forecast at 69.0 million boxes (3.11 million tons), unchanged from October but 18 percent lower than last season. The Florida Valencia orange forecast, at 66.0 million boxes (2.97 million tons), is down 1 percent from the previous forecast and down 15 percent from the 2008-09 crop. Fruit size and drop are below average for the early, midseason, navel, and Valencia varieties. Weather conditions in Florida's citrus growing regions during early 2009 were characterized by a series of cold fronts, freezing temperatures, and below average rainfall. California and Texas orange production forecasts are carried forward from October.

Florida frozen concentrated orange juice (FCOJ) yield forecast for the 2009-10 season is 1.63 gallons per box at 42.0 degrees Brix, unchanged from the October forecast but down 2 percent from last season's final yield of 1.66 gallons per box. Projected yield from the 2009-10 early-midseason and Valencia varieties will be published in the January Crop Production report. All projections of yield assume the processing relationships this season will be similar to those of the past several seasons.
 Agriculture Joseph W. Glauber

Agricultural Statistics Board Acting Chairperson Joseph J. Prusacki

Contents

Page
Cotton, Tobacco \& Sugar Crops
Cotton 4
Cumulative Boll Counts 31
Cottonseed 5
Sugarcane 24
Dry Beans, Peas \& Lentils
Dry Edible Beans 7
Noncitrus Fruits \& Tree Nuts
Papayas 5
Pecans 23
Citrus Fruits
Grapefruit 6
Lemons 6
Oranges 6
Tangelos 6
Tangerines and Mandarins 6
Potatoes \& Miscellaneous Crops
Potatoes 16
Percent of Major Varieties Planted 21
Number of Hills by Type 32
Harvest Loss by Type 33
Grading Categories by Type 33
Size Categories by Type 34
Size Categories: Long Potatoes 35
Coffee 24
Crop Comments 38
Crop Summary 25
Information Contacts 44
Reliability of Production Data in this Report 42
Weather Maps 36
Weather Summary 37

Cotton: Area Harvested, Yield, and Production by Type, State, and United States, 2008 and Forecasted December 1, 2009

Type and State	Area Harvested		Yield			Production ${ }^{1}$	
	2008	2009	2008	2009		2008	2009
				Nov 1	Dec 1		
	1,000 Acres	1,000 Acres	Pounds	Pounds	Pounds	1,000 Bales ${ }^{2}$	1,000 Bales ${ }^{2}$
Upland							
AL	286.0	250.0	787	710	710	469.0	370.0
AZ	133.0	139.0	1,462	1,450	1,450	405.0	420.0
AR	615.0	500.0	1,012	893	826	1,296.0	860.0
CA	117.0	70.0	1,506	1,495	1,714	367.0	250.0
FL	65.0	81.0	916	741	664	124.0	112.0
GA	920.0	990.0	835	873	907	1,600.0	1,870.0
KS	25.0	32.0	653	615	720	34.0	48.0
LA	234.0	225.0	576	768	704	281.0	330.0
MS	360.0	285.0	911	842	758	683.0	450.0
MO	303.0	263.0	1,106	949	949	698.0	520.0
NM	35.0	28.0	974	1,029	943	71.0	55.0
NC	428.0	370.0	847	921	986	755.0	760.0
OK	155.0	195.0	811	825	837	262.0	340.0
SC	134.0	114.0	881	737	842	246.0	200.0
TN	280.0	280.0	909	926	891	530.0	520.0
TX	3,250.0	3,700.0	657	636	649	4,450.0	5,000.0
VA	60.0	64.0	908	938	900	113.5	120.0
US	7,400.0	7,586.0	803	767	774	12,384.5	12,225.0
Amer-Pima ${ }^{3}$							
AZ	0.8	1.3	480	997	997	0.8	2.7
CA	151.0	127.0	1,281	1,247	1,247	403.0	330.0
NM	1.9	1.4	758	789	789	3.0	2.3
TX	15.0	16.5	768	931	931	24.0	32.0
US	168.7	146.2	1,226	1,205	1,205	430.8	367.0
All							
AL	286.0	250.0	787	710	710	469.0	370.0
AZ	133.8	140.3	1,456	1,446	1,446	405.8	422.7
AR	615.0	500.0	1,012	893	826	1,296.0	860.0
CA	268.0	197.0	1,379	1,335	1,413	770.0	580.0
FL	65.0	81.0	916	741	664	124.0	112.0
GA	920.0	990.0	835	873	907	1,600.0	1,870.0
KS	25.0	32.0	653	615	720	34.0	48.0
LA	234.0	225.0	576	768	704	281.0	330.0
MS	360.0	285.0	911	842	758	683.0	450.0
MO	303.0	263.0	1,106	949	949	698.0	520.0
NM	36.9	29.4	963	1,017	936	74.0	57.3
NC	428.0	370.0	847	921	986	755.0	760.0
OK	155.0	195.0	811	825	837	262.0	340.0
SC	134.0	114.0	881	737	842	246.0	200.0
TN	280.0	280.0	909	926	891	530.0	520.0
TX	3,265.0	3,716.5	658	637	650	4,474.0	5,032.0
VA	60.0	64.0	908	938	900	113.5	120.0
US	7,568.7	7,732.2	813	776	782	12,815.3	12,592.0

${ }^{1}$ Production ginned and to be ginned.
${ }^{2}$ 480-lb. net weight bale.
${ }^{3}$ Estimates for current year carried forward from an earlier forecast.

Cottonseed: Production, United States,
2007-2008 and Forecasted December 1, 2009

State	Production			
	2007	2008	$2009{ }^{1}$	
US	1,000 Tons	1,000 Tons	1,000 Tons	

${ }^{1}$ Based on a 3-year average lint-seed ratio.

Papayas: Area and Fresh Production by Month, Hawaii, 2008-2009

Month	Area				Fresh Production ${ }^{1}$	
	Total in Crop		Harvested		2008	2009
	2008	2009	2008	2009		
	Acres	Acres	Acres	Acres	1,000 Pounds	1,000 Pounds
Sep	2,305	2,070	1,320	1,310	2,460	2,385
Oct	2,315	1,970	1,405	1,310	3,075	2,585

${ }^{1}$ Utilized fresh production.

Citrus Fruits: Utilized Production by Crop, State, and United States,

 2007-08, 2008-09 and Forecasted December 1, $2009{ }^{1}$| Crop and State | Utilized Production Boxes | | | Utilized Production Ton Equivalent | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2007-08 | 2008-09 | 2009-10 | 2007-08 | 2008-09 | 2009-10 |
| | 1,000 Boxes ${ }^{2}$ | 1,000 Boxes ${ }^{2}$ | 1,000 Boxes ${ }^{2}$ | 1,000 Tons | 1,000 Tons | 1,000 Tons |
| Oranges | | | | | | |
| $\underset{\text { Early Mid \& }}{\text { Navel }}{ }^{3}$ | | | | | | |
| | | | | | | |
| AZ ${ }^{4}$ | 230 | 150 | | 9 | 5 | |
| CA ${ }^{5}$ | 45,000 | 34,500 | 40,000 | 1,688 | 1,294 | 1,500 |
| FL | 83,500 | 84,600 | 69,000 | 3,758 | 3,807 | 3,105 |
| TX ${ }^{5}$ | 1,600 | 1,300 | 1,250 | 68 | 55 | 53 |
| US | 130,330 | 120,550 | 110,250 | 5,523 | 5,161 | 4,658 |
| Valencia | | | | | | |
| AZ ${ }^{4}$ | 150 | 100 | | 6 | 4 | |
| CA ${ }^{5}$ | 17,000 | 14,000 | 15,000 | 637 | 525 | 563 |
| FL | 86,700 | 77,800 | 66,000 | 3,901 | 3,501 | 2,970 |
| TX ${ }^{5}$ | 196 | 159 | 200 | 9 | 7 | 9 |
| US | 104,046 | 92,059 | 81,200 | 4,553 | 4,037 | 3,542 |
| All | | | | | | |
| AZ ${ }^{4}$ | 380 | 250 | | 15 | 9 | |
| CA ${ }^{5}$ | 62,000 | 48,500 | 55,000 | 2,325 | 1,819 | 2,063 |
| FL | 170,200 | 162,400 | 135,000 | 7,659 | 7,308 | 6,075 |
| TX ${ }^{5}$ | 1,796 | 1,459 | 1,450 | , 77 | 62 | 62 |
| US | 234,376 | 212,609 | 191,450 | 10,076 | 9,198 | 8,200 |
| Grapefruit | | | | | | |
| White | | | | | | |
| FL | 9,000 | 6,600 | 5,800 | 383 | 280 | 247 |
| Colored | | | | | | |
| FL | 17,600 | 15,100 | 14,000 | 748 | 642 | 595 |
| All | | | | | | |
| AZ ${ }^{4}$ | 100 | 25 | | 3 | 1 | |
| CA ${ }^{5}$ | 5,200 | 5,600 | 4,700 | 174 | 188 | 157 |
| FL | 26,600 | 21,700 | 19,800 | 1,131 | 922 | 842 |
| TX ${ }^{5}$ | 6,000 | 5,500 | 5,300 | 240 | 220 | 212 |
| US | 37,900 | 32,825 | 29,800 | 1,548 | 1,331 | 1,211 |
| | | | | | | |
| AZ^{456} | 400 | 250 | 350 | 15 | 9 | 13 |
| CA^{56} | 6,700 | 6,700 | 7,000 | 251 | 251 | 263 |
| FL | 5,500 | 3,850 | 4,800 | 261 | 183 | 228 |
| US | 12,600 | 10,800 | 12,150 | 527 | 443 | 504 |
| Lemons ${ }^{5}$ | | | | | | |
| AZ | 1,500 | 3,000 | 2,500 | 57 | 114 | 95 |
| CA | 14,800 | 22,000 | 20,000 | 562 | 836 | 760 |
| US | 16,300 | 25,000 | 22,500 | 619 | 950 | 855 |
| Tangelos | | | | | | |
| FL | 1,500 | 1,150 | 1,000 | 68 | 52 | 45 |

${ }^{1}$ The crop year begins with the bloom of the first year shown and ends with the completion of harvest the following year.
${ }^{2}$ Net lbs. per box: oranges-AZ \& CA-75, FL-90, TX-85; grapefruit-AZ \& CA-67, FL-85, TX-80; lemons-76; tangelos-90; tangerines and mandarins-AZ \& CA-75, FL-95.
${ }^{3}$ Navel and miscellaneous varieties in AZ and CA. Early (including navel) and midseason varieties in FL and TX. Small quantities of tangerines in TX and Temples in FL.
${ }^{4}$ Estimates discontinued beginning with the 2009-10 crop year.
${ }^{5}$ Estimates for current year carried forward from previous forecast.
${ }^{6}$ Includes tangelos and tangors.

Dry Edible Beans: Area Planted and Harvested, Yield, and Production by State and United States, 2007-2008 and Forecasted December 1, 2009

State	Area Planted			Area Harvested		
	2007	2008	2009	2007	2008	2009
	1,000 Acres					
AZ ${ }^{1}$			15.5			15.2
CA	59.0	52.0	68.5	58.0	51.9	68.0
CO	48.0	48.0	57.0	46.0	44.0	52.0
ID	90.0	80.0	100.0	89.0	79.0	99.0
KS	6.5	6.0	8.5	6.0	5.5	8.0
MI	200.0	200.0	200.0	195.0	195.0	195.0
MN	150.0	150.0	150.0	145.0	145.0	140.0
MT	18.3	11.2	11.9	16.6	9.8	11.5
NE	110.0	135.0	130.0	107.0	126.0	117.0
NM	8.3	9.3	12.5	8.3	9.3	12.5
NY	17.0	17.0	16.0	16.5	16.8	15.6
ND	690.0	660.0	610.0	665.0	640.0	565.0
OR	7.7	4.8	6.5	7.6	4.7	6.5
SD	13.0	8.5	10.3	11.7	8.3	9.9
TX	17.0	24.0	37.0	16.2	21.8	34.5
UT ${ }^{2}$	1.5	1.2		1.3	1.2	
WA	60.0	50.0	58.0	60.0	50.0	58.0
WI	6.1	6.5	6.4	6.0	6.4	6.4
WY	25.0	31.5	36.5	24.0	30.5	35.5
US	1,527.4	1,495.0	1,534.6	1,479.2	1,445.2	1,449.6
	Yield per Acre ${ }^{3}$			Production ${ }^{3}$		
	2007	2008	2009	2007	2008	2009
	Pounds	Pounds	Pounds	1,000 Cwt	1,000 Cwt	1,000 Cwt
AZ ${ }^{1}$			2,120			322
CA	2,090	1,850	2,050	1,212	960	1,394
CO	1,600	1,500	1,650	736	660	858
ID	1,800	1,850	2,000	1,602	1,462	1,980
KS	2,300	2,100	2,800	138	116	224
MI	1,600	1,850	1,800	3,120	3,607	3,510
MN	1,800	1,950	1,800	2,610	2,828	2,521
MT	1,670	1,950	2,030	278	191	234
NE	2,260	2,290	2,100	2,418	2,885	2,457
NM	2,180	2,300	2,250	181	214	281
NY	1,500	1,930	1,190	248	324	185
ND	1,620	1,570	1,480	10,773	10,048	8,362
OR	1,970	2,000	2,260	149	94	147
SD	1,760	1,840	2,340	206	153	232
TX	1,500	1,300	1,600	243	283	552
UT ${ }^{2}$	400	580		5	7	
WA	1,700	1,770	1,800	1,020	885	1,044
WI	1,530	2,130	1,980	92	136	127
WY	2,310	2,310	2,100	555	705	746
US	1,730	1,768	1,737	25,586	25,558	25,176

${ }^{1}$ Estimates began in 2009.
${ }^{2}$ Estimates discontinued in 2009.
${ }^{3}$ Clean Basis.

Dry Edible Beans: Area Planted and Harvested by Commercial Class, State, and Total, 2007-2009 ${ }^{1}$

Class, State, and Total, 2007-2009 ${ }^{1}$						
Class and State	Area Planted			Area Harvested		
	2007	2008	2009	2007	2008	2009
	1,000 Acres					
Large Lima - CA	13.9	15.5	14.3	13.8	15.5	14.3
Baby Lima - CA	16.0	11.7	14.6	15.6	11.7	14.6
Navy						
ID	3.3	3.2	3.6	3.3	3.2	3.6
MI	61.0	62.0	52.0	59.5	60.5	51.1
MN	56.0	58.0	48.6	54.0	56.2	45.5
ND	96.0	123.0	86.0	89.0	118.0	81.0
OR	0.6			0.6		
SD	4.0	3.4	3.6	3.9	3.3	3.3
WY	1.0	1.0	1.4	0.9	0.9	1.3
Total	221.9	250.6	195.2	211.2	242.1	185.8
Great Northern						
ID	2.0	2.6	4.1	2.0	2.5	4.0
NE	48.0	64.3	41.0	45.9	59.7	36.0
ND	8.0	6.7	8.0	7.7	6.5	7.2
WY	1.5	2.5	0.8	1.4	2.4	0.5
Total	59.5	76.1	53.9	57.0	71.1	47.7
Small White						
ID	0.4		0.6	0.4		0.6
OR			1.0			1.0
WA			1.5			1.5
Total	0.4		3.1	0.4		3.1
Pinto						
AZ^{2}			6.3			6.1
CO	37.0	36.0	43.0	36.0	34.0	40.0
ID	25.0	20.5	33.6	24.7	20.2	33.3
KS	6.5	5.4	7.9	6.0	5.0	7.5
MI	4.0	1.8	4.0	3.9	1.7	3.9
MN	22.0	15.7	19.0	21.0	15.2	18.0
MT	8.5	8.6	9.6	8.4	7.2	9.2
NE	48.0	51.2	68.5	47.4	47.3	62.1
NM	7.6	8.5	12.5	7.6	8.5	12.5
ND	502.0	446.0	439.0	487.0	433.0	405.0
OR	0.4	0.7	0.8	0.4	0.7	0.8
SD	1.9	1.7	2.4	1.9	1.6	2.4
UT ${ }^{3}$	1.5	1.2		1.3	1.2	
WA	8.3	7.0	12.1	8.3	7.0	12.1
WY	21.5	25.0	30.6	20.8	24.3	30.2
Total	694.2	629.3	689.3	674.7	606.9	643.1

[^0]| Dry Edible Beans: Yield and Production by Commercial Class, State, and Total, 2007-2009 ${ }^{1}$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Class
 and
 State | Yield per Acre ${ }^{2}$ | | | Production ${ }^{2}$ | | |
| | 2007 | 2008 | 2009 | 2007 | 2008 | 2009 |
| | Pounds | Pounds | Pounds | 1,000 Cwt | 1,000 Cwt | 1,000 Cwt |
| Large Lima - CA | 2,140 | 2,050 | 1,870 | 302 | 317 | 268 |
| Baby Lima - CA | 2,420 | 2,040 | 2,410 | 377 | 239 | 352 |
| Navy | | | | | | |
| ID | 2,670 | 2,470 | 2,330 | 88 | 79 | 84 |
| MI | 1,660 | 1,920 | 1,910 | 990 | 1,162 | 976 |
| MN | 1,850 | 2,000 | 1,900 | 999 | 1,124 | 878 |
| ND | 1,840 | 1,770 | 1,550 | 1,636 | 2,087 | 1,255 |
| OR | 2,200 | | | 13 | | |
| SD | 2,200 | 2,100 | 2,600 | 86 | 69 | 86 |
| WY | 2,220 | 2,330 | 1,790 | 20 | 21 | 23 |
| Total | 1,814 | 1,876 | 1,777 | 3,832 | 4,542 | 3,302 |
| Great Northern | | | | | | |
| ID | 2,450 | 2,360 | 2,350 | 49 | 59 | 94 |
| NE | 2,160 | 2,290 | 2,110 | 991 | 1,369 | 760 |
| ND | 1,470 | 1,690 | 1,570 | 113 | 110 | 113 |
| WY | 2,360 | 2,500 | 1,940 | 33 | 60 | 10 |
| Total | 2,081 | 2,248 | 2,048 | 1,186 | 1,598 | 977 |
| Small White | | | | | | |
| ID | 2,500 | | 2,170 | 10 | | 13 |
| OR | | | 2,300 | | | 23 |
| WA | | | 2,670 | | | 40 |
| Total | 2,500 | | 2,452 | 10 | | 76 |
| Pinto | | | | | | |
| AZ^{3} | | | 2,300 | | | 140 |
| CO | 1,560 | 1,460 | 1,600 | 562 | 496 | 640 |
| ID | 2,510 | 2,300 | 2,350 | 620 | 465 | 783 |
| KS | 2,300 | 2,100 | 2,800 | 138 | 105 | 210 |
| MI | 1,490 | 1,880 | 1,620 | 58 | 32 | 63 |
| MN | 1,750 | 1,800 | 1,500 | 367 | 274 | 270 |
| MT | 2,280 | 2,420 | 2,350 | 192 | 174 | 216 |
| NE | 2,390 | 2,270 | 2,140 | 1,132 | 1,075 | 1,330 |
| NM | 2,300 | 2,300 | 2,250 | 175 | 196 | 281 |
| ND | 1,590 | 1,540 | 1,470 | 7,760 | 6,660 | 5,950 |
| OR | 2,500 | 2,100 | 2,410 | 10 | 15 | 19 |
| SD | 2,600 | 2,500 | 2,600 | 49 | 40 | 62 |
| UT ${ }^{4}$ | 400 | 580 | | 5 | 7 | |
| WA | 2,770 | 2,290 | 2,440 | 230 | 160 | 295 |
| WY | 2,310 | 2,300 | 2,110 | 480 | 558 | 639 |
| Total | 1,746 | 1,690 | 1,695 | 11,778 | 10,257 | 10,898 |

${ }^{1}$ Missing data are included in "Other" class to avoid disclosure of individual operations or no data were reported.
${ }^{2}$ Clean Basis.
${ }^{3}$ Estimates began in 2009.
${ }^{4}$ Estimates discontinued in 2009.

Dry Edible Beans: Area Planted and Harvested by Commercial Class, State, and Total, 2007-2009 ${ }^{1}$						
Class and State	Area Planted			Area Harvested		
	2007	2008	2009	2007	2008	2009
	1,000 Acres					
Light Red						
Kidney						
CA	1.5	2.0	2.4	1.5	2.0	2.4
CO	6.0	8.0	9.0	5.8	7.0	8.0
ID	1.3	1.4	2.1	1.3	1.4	2.1
MI	8.6	9.5	9.1	8.4	9.3	9.0
MN	11.0	14.2	14.0	10.5	13.7	13.2
NE	11.5	13.1	13.0	11.2	12.9	12.0
NY	7.5	7.2	5.9	7.3	7.0	5.7
OR		0.9	1.0		0.9	1.0
Total	47.4	56.3	56.5	46.0	54.2	53.4
Dark Red						
Kidney						
CA	0.5	0.6	0.4	0.5	0.6	0.4
ID	0.9	0.9	2.1	0.9	0.9	2.1
MI	2.3	2.5	2.0	2.0	2.4	1.9
MN	27.0	35.0	36.0	26.5	33.8	33.2
NY	1.5	1.7	1.4	1.4	1.7	1.4
ND	1.5	1.4	1.5	1.4	1.3	1.2
OR	0.4	0.4	0.3	0.4	0.4	0.3
WA		1.8			1.8	
WI^{2}	6.1	6.5	6.4	6.0	6.4	6.4
Total	40.2	50.8	50.1	39.1	49.3	46.9
Pink						
ID	6.1	6.3	6.9	6.1	6.2	6.8
MN	8.8	8.6	6.5	8.4	8.4	6.1
ND	13.0	12.5	11.0	12.5	12.4	10.9
OR	0.5			0.5		
WA	2.4	3.2	3.2	2.4	3.2	3.2
Total	30.8	30.6	27.6	29.9	30.2	27.0
Small Red						
ID	4.5	9.8	7.2	4.4	9.7	7.1
MI	16.0	22.4	21.1	15.5	21.8	20.7
MN	1.7	1.6	1.6	1.6	1.5	1.5
ND	5.5	6.0	2.5	5.3	5.9	2.3
WA	2.9	2.5	2.7	2.9	2.5	2.7
Total	30.6	42.3	35.1	29.7	41.4	34.3
Cranberry						
CA	0.8	1.3	1.0	0.8	1.3	1.0
ID	0.9	0.6	0.6	0.9	0.6	0.6
MI	6.9	7.2	3.9	6.8	7.0	3.8
Total	8.6	9.1	5.5	8.5	8.9	5.4

${ }^{1}$ Missing data are included in "Other" class to avoid disclosure of individual operations or no data were reported.
${ }^{2}$ Includes Light Red Kidney to avoid disclosure of individual operations.

Dry Edible Beans: Yield and Production by Commercial Class, State, and Total, 2007-2009 ${ }^{1}$						
Class and State	Yield per Acre ${ }^{2}$			Production ${ }^{2}$		
	2007	2008	2009	2007	2008	2009
	Pounds	Pounds	Pounds	1,000 Cwt	1,000 Cwt	1,000 Cwt
Light Red Kidney						
CA	1,470	1,300	1,670	22	26	40
CO	2,190	1,660	2,000	127	116	160
ID	2,150	2,360	2,380	28	33	50
MI	1,180	1,260	1,540	99	117	139
MN	1,900	2,000	2,000	199	274	269
NE	2,170	2,300	1,800	243	297	216
NY	1,300	2,010	1,040	95	141	59
OR		2,100	2,130		19	21
Total	1,767	1,887	1,787	813	1,023	954
Dark Red Kidney						
CA	1,000	1,330	2,250	5	8	9
ID	1,780	1,890	2,000	16	17	42
MI	900	1,210	1,160	18	29	22
MN	1,800	2,100	1,900	477	710	636
NY	1,570	2,290	1,630	22	39	23
ND	1,790	1,540	1,580	25	20	19
OR	2,030	2,100	2,330	8	8	7
WA		1,390			25	
WI ${ }^{3}$	1,530	2,130	1,980	92	136	127
Total	1,696	2,012	1,887	663	992	885
Pink						
ID	2,390	2,260	2,500	146	140	170
MN	1,600	1,700	1,600	134	143	98
ND	1,870	1,700	1,380	234	211	150
OR	2,230			11		
WA	2,210	1,970	2,440	53	63	78
Total	1,933	1,844	1,837	578	557	496
Small Red						
ID	2,360	2,220	2,480	104	215	176
MI	1,630	1,950	1,950	253	425	404
MN	1,810	1,950	1,500	29	29	23
ND	1,430	1,440	1,520	76	85	35
WA	2,590	2,480	2,330	75	62	63
Total	1,808	1,971	2,044	537	816	701
Cranberry						
CA	2,250	1,620	1,800	18	21	18
ID	2,000	2,000	2,000	18	12	12
MI	1,290	1,540	1,450	88	108	55
Total	1,459	1,584	1,574	124	141	85

[^1]| Dry Edible Beans: Area Planted and Harvested by Commercial Class, State, and Total, 2007-2009 ${ }^{1}$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Class and State | Area Planted | | | Area Harvested | | |
| | 2007 | 2008 | 2009 | 2007 | 2008 | 2009 |
| | 1,000 Acres |
| Black | | | | | | |
| CA | 0.4 | | | 0.4 | | |
| ID | 2.4 | 1.7 | 3.1 | 2.3 | 1.7 | 3.1 |
| MI | 96.5 | 91.0 | 102.0 | 94.5 | 89.0 | 99.1 |
| MN | 22.0 | 12.6 | 20.8 | 21.6 | 12.2 | 19.2 |
| NE | | 3.1 | 4.0 | | 3.0 | 3.5 |
| NY | 7.0 | 7.4 | 7.6 | 6.9 | 7.4 | 7.5 |
| ND | 45.0 | 53.5 | 46.0 | 43.5 | 53.0 | 43.0 |
| OR | 0.5 | 0.6 | 1.2 | 0.5 | 0.6 | 1.2 |
| WA | 1.9 | 2.0 | 2.6 | 1.9 | 2.0 | 2.6 |
| Total | 175.7 | 171.9 | 187.3 | 171.6 | 168.9 | 179.2 |
| Blackeye | | | | | | |
| AZ ${ }^{2}$ | | | 2.6 | | | 2.6 |
| CA | 12.5 | 7.1 | 12.4 | 12.5 | 7.1 | 12.4 |
| TX | 15.3 | 22.2 | 33.3 | 14.6 | 20.2 | 31.1 |
| Total | 27.8 | 29.3 | 48.3 | 27.1 | 27.3 | 46.1 |
| Small Chickpeas (Garbanzo, Smaller than 20/64 in.) | | | | | | |
| ID | 3.5 | 4.3 | 10.5 | 3.4 | 4.2 | 10.4 |
| MT | 1.6 | 0.9 | 1.9 | 1.5 | 0.9 | 1.9 |
| ND | 4.5 | 4.0 | 9.0 | 4.4 | 3.3 | 8.3 |
| SD | | 0.9 | 1.1 | | 0.9 | 1.1 |
| WA | 1.5 | 1.6 | | 1.5 | 1.6 | |
| Total | 11.1 | 11.7 | 22.5 | 10.8 | 10.9 | 21.7 |
| Large Chickpeas (Garbanzo, Larger than 20/64 in) | | | | | | |
| | | | | | | |
| CA | 6.5 | 6.4 | 14.4 | 6.0 | 6.3 | 14.0 |
| ID | 38.0 | 26.7 | 22.0 | 37.6 | 26.4 | 21.8 |
| MT | 8.2 | 1.7 | 0.4 | 6.7 | 1.7 | 0.4 |
| ND | 12.5 | 5.3 | 4.2 | 12.4 | 5.1 | 3.5 |
| OR | 3.2 | 0.7 | 0.4 | 3.2 | 0.7 | 0.4 |
| SD | 5.7 | 1.5 | 1.0 | 4.6 | 1.5 | 1.0 |
| WA | 40.0 | 29.5 | 31.1 | 40.0 | 29.5 | 31.1 |
| Total | 114.1 | 71.8 | 73.5 | 110.5 | 71.2 | 72.2 |

${ }^{1}$ Missing data are included in "Other" class to avoid disclosure of individual operations or no data were reported.
${ }^{2}$ Estimates began in 2009.

${ }^{1}$ Missing data are included in "Other" class to avoid disclosure of individual operations or no data were reported.
${ }^{2}$ Clean Basis.
${ }^{3}$ Estimates began in 2009.

Dry Edible Beans: Area Planted and Harvested by Commercial Class, State, and Total, 2007-2009 ${ }^{1}$						
Class and State	Area Planted			Area Harvested		
	2007	2008	2009	2007	2008	2009
	1,000 Acres					
Chickpeas, All (Garbanzo)						
CA	6.5	6.4	14.4	6.0	6.3	14.0
ID	41.5	31.0	32.5	41.0	30.6	32.2
MT	9.8	2.6	2.3	8.2	2.6	2.3
ND	17.0	9.3	13.2	16.8	8.4	11.8
OR	3.2	0.7	0.4	3.2	0.7	0.4
SD	5.7	2.4	2.1	4.6	2.4	2.1
WA	41.5	31.1	31.1	41.5	31.1	31.1
Total	125.2	83.5	96.0	121.3	82.1	93.9
Other						
AZ ${ }^{2}$			6.6			6.5
CA	6.9	7.4	9.0	6.9	7.4	8.9
CO	5.0	4.0	5.0	4.2	3.0	4.0
ID	1.7	2.0	3.6	1.7	2.0	3.5
KS		0.6	0.6		0.5	0.5
MI	4.7	3.6	5.9	4.4	3.3	5.5
MN	1.5	4.3	3.5	1.4	4.0	3.3
NE	2.5	3.3	3.5	2.5	3.1	3.4
NM	0.7	0.8		0.7	0.8	
NY	1.0	0.7	1.1	0.9	0.7	1.0
ND	2.0	1.6	2.8	1.8	1.5	2.6
OR	2.1	1.5	1.8	2.0	1.4	1.8
SD	1.4	1.0	2.2	1.3	1.0	2.1
TX	1.7	1.8	3.7	1.6	1.6	3.4
WA	3.0	2.4	4.8	3.0	2.4	4.8
WY	1.0	3.0	3.7	0.9	2.9	3.5
Total	35.2	38.0	57.8	33.3	35.6	54.8

${ }^{1}$ Missing data are included in "Other" class to avoid disclosure of individual operations or no data were reported.
${ }^{2}$ Estimates began in 2009.

Dry Edible Beans: Yield and Production by Commercial Class, State, and Total, 2007-2009 ${ }^{1}$						
Class and State	Yield per Acre ${ }^{2}$			Production ${ }^{2}$		
	2007	2008	2009	2007	2008	2009
	Pounds	Pounds	Pounds	1,000 Cwt	1,000 Cwt	1,000 Cwt
Chickpeas, All (Garbanzo)						
CA	1,900	1,840	2,020	114	116	283
ID	1,050	1,180	1,290	432	362	415
MT	1,050	650	780	86	17	18
ND	1,480	1,420	1,640	248	119	194
OR	1,600	1,290	1,250	51	9	5
SD	950	1,210	1,290	44	29	27
WA	1,300	1,500	1,300	540	466	405
Total	1,249	1,362	1,435	1,515	1,118	1,347
Other						
AZ ${ }^{3}$			2,000			130
CA	1,410	1,460	1,360	97	108	121
CO	1,120	1,600	1,450	47	48	58
ID	2,650	2,100	2,060	45	42	72
KS		2,100	2,800		11	14
MI	1,680	1,300	1,470	74	43	81
MN	1,930	1,830	1,800	27	73	59
NE	2,080	2,420	2,180	52	75	74
NM	880	2,250		6	18	
NY	1,890	1,570	1,500	17	11	15
ND	1,610	1,670	1,380	29	25	36
OR	2,200	2,080	2,280	44	29	41
SD	2,100	1,500	2,700	27	15	57
TX	940	875	970	15	14	33
WA	2,300	2,620	2,040	69	63	98
WY	2,440	2,280	2,120	22	66	74
Total	1,715	1,801	1,757	571	641	963

${ }^{1}$ Missing data are included in "Other" class to avoid disclosure of individual operations or no data were reported.
${ }^{2}$ Clean Basis.
${ }^{3}$ Estimates began in 2009.

Potatoes: Area Planted, Harvested, Yield, and Production
by Seasonal Group, State, and United States, 2007-2009 ${ }^{1}$

Seasonal Group and State	Area Planted			Area Harvested		
	2007	2008	2009	2007	2008	2009
	1,000 Acres					
Winter CA FL^{2}	10.5	11.0	9.0	10.5	11.0	8.7
Total	10.5	11.0	9.0	10.5	11.0	8.7
Spring						
AZ	4.0	3.5	4.0	4.0	3.5	4.0
CA	15.5	15.4	17.5	15.5	15.4	17.5
FL^{2}	27.8	28.5	29.3	27.2	27.9	28.6
Hastings	16.5	17.4	17.8	16.2	17.0	17.4
Other FL	11.3	11.1	11.5	11.0	10.9	11.2
NC	16.0	14.5	16.0	14.5	14.0	15.0
TX	9.5	8.4	8.8	9.0	8.0	8.3
Total	72.8	70.3	75.6	70.2	68.8	73.4
	Yield			Production		
	2007	2008	2009	2007	2008	2009
	Cwt	Cwt	Cwt	1,000 Cwt	1,000 Cwt	1,000 Cwt
Winter						
CA FL^{2}	215		245	2,258	2,530	2,132
Total	215	230	245	2,258	2,530	2,132
Spring						
AZ	280	300	280	1,120	1,050	1,120
CA	395	450	430	6,123	6,930	7,525
FL^{2}	287	285	274	7,807	7,952	7,846
Hastings	285	285	290	4,617	4,845	5,046
Other FL	290	285	250	3,190	3,107	2,800
NC	185	180	195	2,700	2,520	2,925
TX	230	210	230	2,070	1,680	1,909
Total	282	293	291	19,820	20,132	21,325

${ }^{1}$ Carried forward from earlier estimate.
${ }^{2}$ Winter potatoes combined with spring potatoes in 2008.

Potatoes: Area Planted and Harvested by Seasonal Group, State, and United States, 2007-2009

Seasonal Group and State	Area Planted			Area Harvested		
	2007	2008	2009	2007	2008	2009
	1,000 Acres					
Summer ${ }^{1}$						
AL	1.2	1.3		1.1	1.2	
CA	4.3	3.6	3.8	4.3	3.6	3.8
CO	3.0	4.6	4.0	2.7	4.4	3.9
DE	2.0	1.7	1.7	2.0	1.7	1.7
IL	6.3	5.5	5.4	6.1	5.3	5.2
KS	5.0	5.0	5.0	4.9	4.8	4.8
MD	3.0	2.5	2.4	3.0	2.5	2.4
MO	6.8	7.2	7.3	6.6	6.5	7.0
NJ	2.4	2.0	2.0	2.4	2.0	2.0
TX	11.2	8.0	5.9	9.8	7.4	5.4
VA	5.6	5.8	6.4	5.4	5.7	6.3
Total	50.8	47.2	43.9	48.3	45.1	42.5
Fall						
CA	7.9	8.4	8.4	7.9	8.4	8.4
CO	59.2	57.0	56.0	59.1	56.9	55.2
ID	350.0	305.0	320.0	349.0	304.0	319.0
10 SW Co	21.0	15.0	19.0	21.0	15.0	19.0
Other ID	329.0	290.0	301.0	328.0	289.0	300.0
ME	57.1	56.0	56.0	56.5	54.7	55.5
MA	2.7	2.8	3.5	2.6	2.7	3.5
MI	42.5	43.0	45.0	42.0	42.5	43.5
MN	52.0	50.0	47.0	49.0	48.0	45.0
MT	11.3	10.9	11.0	11.2	10.5	9.5
NE	21.0	19.5	20.0	19.8	19.4	19.8
NV	7.3	5.8	5.1	7.3	5.8	5.1
NM	5.5	5.9	6.5	5.4	5.9	6.4
NY	19.0	18.0	17.1	18.3	17.8	16.5
ND	97.0	82.0	83.0	91.0	81.0	75.0
OH	3.2	2.5	2.3	3.0	2.1	2.1
OR	36.5	35.3	37.0	36.5	35.3	37.0
Malheur ${ }^{2}$	3.0	2.8		3.0	2.8	
Other OR ${ }^{2}$	33.5	32.5		33.5	32.5	
PA	10.5	10.0	10.0	10.0	9.5	9.5
RI	0.6	0.5	0.5	0.6	0.5	0.4
WA	160.0	155.0	145.0	160.0	155.0	145.0
WI	64.5	63.5	63.5	64.0	62.0	63.0
Total	1,007.8	931.1	936.9	993.2	922.0	919.4
US	1,141.9	1,059.6	1,065.4	1,122.2	1,046.9	1,044.0

${ }^{1}$ Carried forward from earlier estimate.
${ }^{2}$ Estimates discontinued in 2009.

Potatoes: Yield and Production by Seasonal Group, State, and United States, 2007-2009

Seasonal Group and State	Yield			Production		
	2007	2008	2009	2007	2008	2009
	Cwt	Cwt	Cwt	1,000 Cwt	1,000 Cwt	1,000 Cwt
Summer ${ }^{1}$						
AL	140	170		154	204	
CA	360	360	370	1,548	1,296	1,406
CO	350	370	400	945	1,628	1,560
DE	270	250	290	540	425	493
IL	400	395	390	2,440	2,094	2,028
KS	365	320	325	1,789	1,536	1,560
MD	320	300	350	960	750	840
MO	300	190	290	1,980	1,235	2,030
NJ	265	230	270	636	460	540
TX	395	395	460	3,871	2,923	2,484
VA	210	220	280	1,134	1,254	1,764
Total	331	306	346	15,997	13,805	14,705
Fall						
CA	480	470	495	3,792	3,948	4,158
CO	355	385	400	20,981	21,907	22,080
ID	373	383	411	130,010	116,475	131,000
10 SW Co	490	540	500	10,290	8,100	9,500
Other ID	365	375	405	119,720	108,375	121,500
ME	295	270	275	16,668	14,769	15,263
MA	320	260	260	832	702	910
MI	350	350	360	14,700	14,875	15,660
MN	440	425	470	21,560	20,400	21,150
MT	330	330	345	3,696	3,465	3,278
NE	415	425	440	8,217	8,245	8,712
NV	390	410	465	2,847	2,378	2,372
NM	370	390	420	1,998	2,301	2,688
NY	285	320	300	5,216	5,696	4,950
ND	260	280	255	23,660	22,680	19,125
OH	330	325	335	990	683	704
OR	556	529	580	20,293	18,676	21,460
Malheur ${ }^{2}$	455	460		1,365	1,288	
Other OR ${ }^{2}$	565	535		18,928	17,388	
PA	220	265	310	2,200	2,518	2,945
RI	300	280	210	180	140	84
WA	630	600	610	100,800	93,000	88,450
WI	440	415	460	28,160	25,730	28,980
Total	410	411	429	406,800	378,588	393,969
US	396	396	414	444,875	415,055	432,131

${ }^{1}$ Carried forward from earlier estimate.
${ }^{2}$ Estimates discontinued in 2009.

Potatoes: Area Planted and Harvested by State and United States, 2007-2009

State	Area Planted			Area Harvested		
	2007	2008	2009	2007	2008	2009
	1,000 Acres					
AL	1.2	1.3		1.1	1.2	
AZ	4.0	3.5	4.0	4.0	3.5	4.0
CA	38.2	38.4	38.7	38.2	38.4	38.4
CO	62.2	61.6	60.0	61.8	61.3	59.1
DE	2.0	1.7	1.7	2.0	1.7	1.7
FL	27.8	28.5	29.3	27.2	27.9	28.6
ID	350.0	305.0	320.0	349.0	304.0	319.0
IL	6.3	5.5	5.4	6.1	5.3	5.2
KS	5.0	5.0	5.0	4.9	4.8	4.8
ME	57.1	56.0	56.0	56.5	54.7	55.5
MD	3.0	2.5	2.4	3.0	2.5	2.4
MA	2.7	2.8	3.5	2.6	2.7	3.5
MI	42.5	43.0	45.0	42.0	42.5	43.5
MN	52.0	50.0	47.0	49.0	48.0	45.0
MO	6.8	7.2	7.3	6.6	6.5	7.0
MT	11.3	10.9	11.0	11.2	10.5	9.5
NE	21.0	19.5	20.0	19.8	19.4	19.8
NV	7.3	5.8	5.1	7.3	5.8	5.1
NJ	2.4	2.0	2.0	2.4	2.0	2.0
NM	5.5	5.9	6.5	5.4	5.9	6.4
NY	19.0	18.0	17.1	18.3	17.8	16.5
NC	16.0	14.5	16.0	14.5	14.0	15.0
ND	97.0	82.0	83.0	91.0	81.0	75.0
OH	3.2	2.5	2.3	3.0	2.1	2.1
OR	36.5	35.3	37.0	36.5	35.3	37.0
PA	10.5	10.0	10.0	10.0	9.5	9.5
RI	0.6	0.5	0.5	0.6	0.5	0.4
TX	20.7	16.4	14.7	18.8	15.4	13.7
VA	5.6	5.8	6.4	5.4	5.7	6.3
WA	160.0	155.0	145.0	160.0	155.0	145.0
WI	64.5	63.5	63.5	64.0	62.0	63.0
US	1,141.9	1,059.6	1,065.4	1,122.2	1,046.9	1,044.0

Potatoes: Yield and Production by State
and United States, 2007-2009

State	Yield ${ }^{1}$			Production		
	2007	2008	2009	2007	2008	2009
	Cwt	Cwt	Cwt	1,000 Cwt	1,000 Cwt	1,000 Cwt
AL	140	170		154	204	
AZ	280	300	280	1,120	1,050	1,120
CA	359	383	396	13,721	14,704	15,221
CO	355	384	400	21,926	23,535	23,640
DE	270	250	290	540	425	493
FL	287	285	274	7,807	7,952	7,846
ID	373	383	411	130,010	116,475	131,000
IL	400	395	390	2,440	2,094	2,028
KS	365	320	325	1,789	1,536	1,560
ME	295	270	275	16,668	14,769	15,263
MD	320	300	350	960	750	840
MA	320	260	260	832	702	910
MI	350	350	360	14,700	14,875	15,660
MN	440	425	470	21,560	20,400	21,150
MO	300	190	290	1,980	1,235	2,030
MT	330	330	345	3,696	3,465	3,278
NE	415	425	440	8,217	8,245	8,712
NV	390	410	465	2,847	2,378	2,372
NJ	265	230	270	636	460	540
NM	370	390	420	1,998	2,301	2,688
NY	285	320	300	5,216	5,696	4,950
NC	186	180	195	2,700	2,520	2,925
ND	260	280	255	23,660	22,680	19,125
OH	330	325	335	990	683	704
OR	556	529	580	20,293	18,676	21,460
PA	220	265	310	2,200	2,518	2,945
RI	300	280	210	180	140	84
TX	316	299	321	5,941	4,603	4,393
VA	210	220	280	1,134	1,254	1,764
WA	630	600	610	100,800	93,000	88,450
WI	440	415	460	28,160	25,730	28,980
US	396	396	414	444,875	415,055	432,131

[^2]Fall Potatoes: Percent of Varieties Planted, 2009 Crop
The National Agricultural Statistics Service conducts variety surveys in 8 States, accounting for 88 percent of the 2009 forecasted U.S. fall potato production. Colorado data are from a growers' potato variety survey. The remaining 7 States conduct objective yield surveys where all producing areas are sampled in proportion to planted acreage. Variety data shown below are actual percentages from these surveys.

Fall Potatoes: Percent of Major Varieties Planted,

		: Percent of Selected State	$\begin{aligned} & \text { Major Vari } \\ & , 2009 \text { Cro } \end{aligned}$	s Planted,	
State	Varieties	Pct. of Planted Acres	State	Varieties	Pct. of Planted Acres
ID	R Burbank	56.2	ND	R Burbank	53.8
	Ranger R	15.0		Norland	11.0
	R Norkotah	14.6		Ranger R	5.3
	Premier R	2.8		Umatilla R	5.1
	Western R	2.3		Frito-Lay	5.0
	Umatilla R	1.7		Dakota Pearl	3.5
	Shepody	1.6		Shepody	2.7
	Alturas	1.2		Bannock	2.5
	Frito-Lay	1.0		Ivory Crisp	2.4
	Other	3.6		Sangre	2.3
				Red LaSoda	2.2
ME	R Burbank	41.5		Dakota Crisp	1.4
	Frito-Lay R Norkotah	11.1		Other	2.8
		5.1			
	Superior	4.9	OR	R Norkotah	26.6
	Yukon Gold			R Burbank	20.1
	Shepody	4.3 3.9		Ranger R	17.7
	Norland	3.9 3.6		Premier R	6.1
	Atlantic			Alturas	5.9
	Goldrush	3.0 2.7		Shepody	5.9
	Katahdin	2.7		Frito-Lay	5.6
	Monona	2.7		Umatilla R	5.0
	Reba	2.1 2.0		Pike	1.8
	Ontario	2.0 1.5		Dakota Pearl	1.6
	Snowden	1.4		Other	3.7
	Norwis	1.2			
	Other	9.0	WA	R Burbank	30.8
	R Burbank Norland Umatilla R Dakota Rose Chieftain Cascade R Norkotah Yukon Gold Snowden Other	53.2		R Norkotah	14.5
MN				Ranger R	13.9
		22.6		Umatilla R	11.9
		5.1		Alturas	7.9
				Chieftain	3.6
		2.0 1.4		Premier R	3.4
		1.4 1.2		Frito-Lay	3.4
		1.2		Shepody	2.3
		1.2		Other	8.3
		1.0	WI		
		11.1		Frito-Lay	21.4
				R Burbank	17.0
				Norkotah	13.5
				Goldrush	10.3
				Norland	8.7
				Silverton R	8.2
				Snowden	5.9
				Superior	2.9
				Atlantic	2.0
				Ranger R	1.3
				Pike	1.1
				Shepody	1.0
				Bannock	1.0
				Mega Chip	1.0
				Other	4.7

[^3]Fall Potatoes: Percent of Major Varieties Planted, 7-State Total, 2009 Crop ${ }^{1}$

Varieties	Pct. of Planted Acres	Varieties	Pct. of Planted Acres
R Burbank	44.7	Pike	0.4
R Norkotah	12.2	Bannock	0.3
Ranger R	10.8	Ivory Crisp	0.3
Frito-Lay	4.5	Sangre	0.3
Umatilla R	4.2	Red LaSoda	0.2
Norland	3.9	Cascade	0.2
Alturas	2.4	Klondike Rose	0.2
Premier R	2.2	Katahdin	0.2
Shepody	2.1	Monona	0.2
Goldrush	1.1	Dakota Crisp	0.1
Western R	1.0	NorValley	0.1
Yukon Gold	0.9	Mazama	0.1
Chieftain	0.9	Reba	0.1
Dakota Pearl	0.7	Dakota Rose	0.1
Silverton R	0.7	Bintje	0.1
Snowden	0.7	Ontario	0.1
Superior	0.6	Defender	0.1
Atlantic	0.5	Other	2.8

${ }^{1}$ Revised from the September preliminary.

Fall Potatoes: Percent of Major Varieties Planted, Colorado, 2009 Crop

Varieties	Pct. of Planted Acres	Varieties	Pct. of Planted Acres
R Norkotah	42.5	Latona	1.3
Canela R	11.9	Gala	1.1
Centennial R	9.9	Cherry Red	0.9
Rio Grande R	7.1	Purple Majesty	0.2
Yukon Gold	2.8	Chipeta	0.1
R Nugget	2.8	Atlantic	0.1
Satina	2.5	Other	16.8

Pecans: Production by Variety, State, and United States, 2007-2008 and Forecasted December 1, 2009

Variety and State	Utilized Production (In-Shell Basis)		
	2007	2008	2009
	1,000 Pounds	1,000 Pounds	1,000 Pounds
Improved Varieties ${ }^{1}$			
AL	10,000	7,400	8,600
AZ	23,000	17,500	24,000
AR^{2}	1,500	1,000	1,500
CA ${ }^{2}$	4,400	3,750	3,800
FL^{2}	1,700	1,400	1,800
GA	135,000	66,000	82,000
LA	3,000	1,000	2,500
MS ${ }^{2}$	2,200	900	2,000
MO ${ }^{2}$	2	110	250
NM	74,000	43,000	76,000
NC ${ }^{3}$	160	600	
OK	3,000	1,000	6,000
SC ${ }^{2}$	1,500	3,000	3,300
TX	44,000	20,000	40,000
US	303,462	166,660	251,750
Native and Seedling			
AL	2,000	600	1,400
AR ${ }^{2}$	800	500	800
FL^{2}	200	300	300
GA	15,000	4,000	3,000
KS ${ }^{2}$	500	1,900	1,700
LA	11,000	4,000	5,500
MS ${ }^{2}$	800	600	500
MO ${ }^{2}$	3	830	1,550
NC ${ }^{3}$	40	100	
OK	27,000	4,000	14,000
SC ${ }^{2}$	500	400	700
TX	26,000	10,000	20,000
US	83,843	27,230	49,450
All Pecans			
AL	12,000	8,000	10,000
AZ	23,000	17,500	24,000
AR ${ }^{2}$	2,300	1,500	2,300
CA^{2}	4,400	3,750	3,800
FL^{2}	1,900	1,700	2,100
GA	150,000	70,000	85,000
KS ${ }^{2}$	500	1,900	1,700
LA	14,000	5,000	8,000
MS ${ }^{2}$	3,000	1,500	2,500
MO ${ }^{2}$	5	940	1,800
NM	74,000	43,000	76,000
NC^{3}	200	700	
OK	30,000	5,000	20,000
SC ${ }^{2}$	2,000	3,400	4,000
TX	70,000	30,000	60,000
US	387,305	193,890	301,200

${ }^{1}$ Budded, grafted, or topworked varieties.
${ }^{2}$ Estimates for current year carried forward from earlier forecast.
${ }^{3}$ Estimates discontinued in 2009.

Sugarcane: Area Harvested, Yield, and Production by Use, State, and United States, 2008 and Forecasted December 1, 2009

Use and State	Area Harvested		Yield ${ }^{1}$			Production ${ }^{1}$	
	2008	2009	2008	2009		2008	2009
				Nov 1	Dec 1		
	1,000 Acres	1,000 Acres	Tons	Tons	Tons	1,000 Tons	1,000 Tons
For Sugar							
FL	384.0	372.0	32.9		36.4	12,634	13,541
HI	20.4	19.7	69.7		71.0	1,422	1,399
LA	380.0	375.0	28.3		30.0	10,754	11,250
TX	37.2	39.0	35.5		35.0	1,321	1,365
US	821.6	805.7	31.8		34.2	26,131	27,555
For Seed							
FL	17.0	18.0	36.5		36.4	621	655
HI	2.4	2.0	30.0		30.0	72	60
LA	25.0	25.0	28.3		30.0	708	750
TX	2.0	2.0	35.5		35.0	71	70
US	46.4	47.0	31.7		32.7	1,472	1,535
For Sugar and Seed							
FL	401.0	390.0	33.1	36.7	36.4	13,255	14,196
HI	22.8	21.7	65.5	67.2	67.2	1,494	1,459
LA	405.0	400.0	28.3	30.0	30.0	11,462	12,000
TX	39.2	41.0	35.5	35.0	35.0	1,392	1,435
US	868.0	852.7	31.8	34.3	34.1	27,603	29,090

${ }^{1}$ Net tons.

Coffee: Area Harvested, Yield, and Production
Hawaii and Puerto Rico, 2007-2009

State	Area Harvested			Yield			Production ${ }^{1}$		
	2007-08	2008-09	2009-10	2007-08	2008-09	2009-10	2007-08	2008-09	2009-10
	Acres	Acres	Acres	Pounds	Pounds	Pounds	1,000 Pounds	1,000 Pounds	1,000 Pounds
HI	6,400	6,300	6,300	1,170	1,380	1,270	7,500	8,700	8,000
PR	39,000	33,000	27,000	450	405	350	17,500	13,300	9,500

${ }^{1}$ Parchment basis.

Crop Summary: Area Planted and Harvested, United States, 2008-2009
(Domestic Units) ${ }^{1}$

Crop	Area Planted		Area Harvested	
	2008	2009	2008	2009
	1,000 Acres	1,000 Acres	1,000 Acres	1,000 Acres
Grains \& Hay				
Barley	4,246.0	3,567.0	3,779.0	3,113.0
Corn for Grain ${ }^{2}$	85,982.0	86,351.0	78,640.0	79,294.0
Corn for Silage			5,965.0	
Hay, All			60,152.0	60,177.0
Alfalfa			21,060.0	20,982.0
All Other			39,092.0	39,195.0
Oats	3,247.0	3,404.0	1,400.0	1,379.0
Proso Millet	520.0	405.0	460.0	
Rice	2,995.0	3,125.0	2,976.0	3,101.0
Rye	1,260.0	1,241.0	269.0	252.0
Sorghum for Grain ${ }^{2}$	8,284.0	6,623.0	7,271.0	5,681.0
Sorghum for Silage			408.0	
Wheat, All	63,193.0	59,133.0	55,699.0	49,868.0
Winter	46,307.0	43,311.0	39,608.0	34,485.0
Durum	2,721.0	2,554.0	2,574.0	2,428.0
Other Spring	14,165.0	13,268.0	13,517.0	12,955.0
Oilseeds				
Canola	1,011.0	831.0	989.0	807.5
Cottonseed ${ }^{3}$				
Flaxseed	354.0	353.0	340.0	341.0
Mustard Seed	79.5	53.5	71.5	50.5
Peanuts	1,534.0	1,109.0	1,507.0	1,082.0
Rapeseed	0.2	0.9	0.2	0.8
Safflower	202.0	194.0	195.0	187.0
Soybeans for Beans	75,718.0	77,510.0	74,681.0	76,619.0
Sunflower	2,516.5	2,032.0	2,396.0	1,939.0
Cotton, Tobacco \& Sugar Crops				
Cotton, All	9,471.0	9,138.7	7,568.7	7,732.2
Upland	9,297.0	8,989.0	7,400.0	7,586.0
Amer-Pima	174.0	149.7	168.7	146.2
Sugarbeets	1,090.8	1,185.0	1,004.6	1,150.5
Sugarcane			868.0	852.7
Tobacco			354.5	353.3
Dry Beans, Peas \& Lentils				
Austrian Winter Peas	17.5	20.5	8.0	10.7
Dry Edible Beans	1,495.0	1,534.6	1,445.2	1,449.6
Dry Edible Peas	882.5	865.3	847.3	835.9
Lentils	271.0	413.0	261.0	405.0
Wrinkled Seed Peas ${ }^{3} \mathrm{C}$				
Potatoes \& Misc.				
Coffee (HI)			6.3	6.3
Ginger Root (HI)			0.1	
Hops			40.9	40.2
Peppermint Oil			60.0	
Potatoes, All	1,059.6	1,065.4	1,046.9	1,044.0
Winter	11.0	9.0	11.0	8.7
Spring	70.3	75.6	68.8	73.4
Summer	47.2	43.9	45.1	42.5
Fall	931.1	936.9	922.0	919.4
Spearmint Oil			20.4	
Sweet Potatoes	103.2	106.7	97.3	103.3
Taro (HI) ${ }^{4}$			0.4	445.0

${ }^{1}$ Data are the latest estimates available, either from the current report or from previous reports. Current year estimates are for the full 2009 crop year.
${ }^{2}$ Area planted for all purposes.
${ }^{3}$ Acreage is not estimated.
${ }^{4}$ Area is total acres in crop, not harvested acreage.

Crop Summary: Yield and Production, United States, 2008-2009
(Domestic Units) ${ }^{1}$

Crop	Units	Yield		Production	
		2008	2009	2008	2009
				1,000	1,000
Grains \& Hay					
Barley	Bu	63.6	73.0	240,193	227,323
Corn for Grain	"	153.9	162.9	12,101,238	12,920,928
Corn for Silage	Tons	18.7		111,619	
Hay, All	"	2.43	2.54	146,270	152,729
Alfalfa	"	3.33	3.43	70,180	71,977
All Other	"	1.95	2.06	76,090	80,752
Oats	Bu	63.7	67.5	89,135	93,081
Proso Millet	"	32.3		14,880	
Rice ${ }^{2}$	Cwt	6,846	7,038	203,733	218,245
Rye	Bu	29.7	27.8	7,979	6,993
Sorghum for Grain	-	65.0	64.0	472,342	363,810
Sorghum for Silage	Tons	13.8		5,646	
Wheat, All	Bu	44.9	44.4	2,499,164	2,216,171
Winter	"	47.1	44.2	1,867,333	1,522,718
Durum	"	32.6	44.9	83,827	109,042
Other Spring	"	40.5	45.1	548,004	584,411
Oilseeds					
Canola	Lbs	1,461	1,861	1,445,064	1,502,820
Cottonseed ${ }^{3}$	Tons			4,300.3	4,242.0
Flaxseed	Bu	16.8		5,716	
Mustard Seed	Lbs	577		41,255	
Peanuts	"	3,426	3,353	5,162,400	3,627,600
Rapeseed	"	1,500		300	
Safflower	"	1,592		310,433	
Soybeans for Beans	Bu	39.7	43.3	2,967,007	3,319,270
Sunflower	Lbs	1,429	1,538	3,422,840	2,981,670
Cotton, Tobacco \& Sugar Crops					
Cotton, All^{2}	Bales	813	782	12,815.3	12,592.0
Upland ${ }^{2}$		803	774	12,384.5	12,225.0
Amer-Pima ${ }^{2}$	"	1,226	1,205	430.8	367.0
Sugarbeets	Tons	26.7	25.6	26,837	29,445
Sugarcane	"	31.8	34.1	27,603	29,090
Tobacco	Lbs	2,258	2,304	800,504	813,964
Dry Beans, Peas \& Lentils					
Austrian Winter Peas ${ }^{2}$	${ }^{\text {Cwt }}$	1,300	1,467	104	157
Dry Edible Beans ${ }^{2}$	"	1,768	1,737	25,558	25,176
Dry Edible Peas ${ }^{2}$	"	1,448	2,079	12,270	17,378
Lentils ${ }^{2}$	"	917	1,439	2,393	5,827
Wrinkled Seed Peas ${ }^{3}$	"			580	
Potatoes \& Misc.					
Coffee (HI)	Lbs	1,380	1,270	8,700	8,000
Ginger Root (HI)	"	30,000		1,800	
Hops	$"$	1,971	2,013	80,630.1	80,878.7
Peppermint Oil	"	92		5,499	
Potatoes, All	Cwt	396	414	415,055	432,131
Winter	"	230	245	2,530	2,132
Spring	"	293	291	20,132	21,325
Summer	$"$	306	346	13,805	14,705
Fall	"	411	429	378,588	393,969
Spearmint Oil	Lbs	118		2,399	
Sweet Potatoes	Cwt	190		18,443	
Taro (HI) ${ }^{3}$	Lbs			4,300	

${ }^{1}$ Data are the latest estimates available, either from the current report or from previous reports. Current year estimates are for the full 2009 crop year.
${ }^{2}$ Yield in pounds.
${ }^{3}$ Yield is not estimated.

Crop Summary: Area Planted and Harvested, United States, 2008-2009
(Metric Units) ${ }^{1}$

Crop	Area Planted		Area Harvested	
	2008	2009	2008	2009
	Hectares	Hectares	Hectares	Hectares
Grains \& Hay				
Barley	1,718,310	1,443,530	1,529,320	1,259,800
Corn for Grain ${ }^{2}$	34,796,060	34,945,390	31,824,820	32,089,490
Corn for Silage			2,413,980	
Hay, All^{3}			24,342,910	24,353,030
Alfalfa			8,522,770	8,491,210
All Other			15,820,140	15,861,820
Oats	1,314,030	1,377,560	566,570	558,070
Proso Millet	210,440	163,900	186,160	
Rice	1,212,050	1,264,660	1,204,360	1,254,940
Rye	509,910	502,220	108,860	101,980
Sorghum for Grain ${ }^{2}$	3,352,450	2,680,260	2,942,500	2,299,040
Sorghum for Silage			165,110	
Wheat, All 3	25,573,580	23,930,530	22,540,830	20,181,080
Winter	18,739,980	17,527,530	16,028,960	13,955,730
Durum	1,101,160	1,033,580	1,041,670	982,590
Other Spring	5,732,430	5,369,430	5,470,190	5,242,760
Oilseeds				
Canola	409,140	336,300	400,240	326,790
Cottonseed ${ }^{4}$				
Flaxseed	143,260	142,860	137,590	138,000
Mustard Seed	32,170	21,650	28,940	20,440
Peanuts	620,790	448,800	609,870	437,870
Rapeseed	80	360	80	320
Safflower	81,750	78,510	78,910	75,680
Soybeans for Beans	30,642,320	31,367,520	30,222,650	31,006,940
Sunflower	1,018,400	822,330	969,640	784,690
Cotton, Tobacco \& Sugar Crops				
Cotton, All ${ }^{3}$	3,832,820	3,698,340	3,062,980	3,129,140
Upland	3,762,400	3,637,760	2,994,710	3,069,980
Amer-Pima	70,420	60,580	68,270	59,170
Sugarbeets	441,440	479,560	406,550	465,600
Sugarcane			351,270	345,080
Tobacco			143,460	142,970
Dry Beans, Peas \& Lentils				
Austrian Winter Peas	7,080	8,300	3,240	4,330
Dry Edible Beans	605,010	621,040	584,860	586,640
Dry Edible Peas	357,140	350,180	342,890	338,280
Lentils	109,670	167,140	105,620	163,900
Wrinkled Seed Peas ${ }^{4}$				
Potatoes \& Misc.				
Coffee (HI)			2,550	2,550
Ginger Root (HI)			20	
Hops			16,550	16,260
Peppermint Oil			24,280	
Potatoes, All ${ }^{3}$	428,810	431,160	423,670	422,500
Winter	4,450	3,640	4,450	3,520
Spring	28,450	30,590	27,840	29,700
Summer	19,100	17,770	18,250	17,200
Fall	376,810	379,150	373,120	372,070
Spearmint Oil			8,260	
Sweet Potatoes	41,760	43,180	39,380	41,800
Taro (HI) ${ }^{5}$			160	180

${ }^{1}$ Data are the latest estimates available, either from the current report or from previous reports. Current year estimates are for the full 2009 crop year.
${ }^{2}$ Area planted for all purposes.
${ }^{3}$ Total may not add due to rounding.
${ }_{5}^{4}$ Acreage is not estimated.
${ }^{5}$ Area is total hectares in crop, not harvested hectares.

Crop Summary: Yield and Production, United States, 2008-2009
$\left(\right.$ Metric Units) ${ }^{1}$

Crop	Yield		Production	
	2008	2009	2008	2009
	Metric Tons	Metric Tons	Metric Tons	Metric Tons
Grains \& Hay				
Barley	3.42	3.93	5,229,590	4,949,370
Corn for Grain	9.66	10.23	307,385,600	328,206,690
Corn for Silage	41.95		101,259,050	
Hay, All ${ }^{2}$	5.45	5.69	132,693,910	138,553,420
Alfalfa	7.47	7.69	63,666,230	65,296,440
All Other	4.36	4.62	69,027,690	73,256,980
Oats	2.28	2.42	1,293,790	1,351,070
Proso Millet	1.81		337,470	
Rice	7.67	7.89	9,241,170	9,899,430
Rye	1.86	1.74	202,680	177,630
Sorghum for Grain	4.08	4.02	11,998,040	9,241,200
Sorghum for Silage	31.02		5,121,970	
Wheat, All ${ }^{2}$	3.02	2.99	68,016,100	60,314,290
Winter	3.17	2.97	50,820,480	41,441,590
Durum	2.19	3.02	2,281,400	2,967,640
Other Spring	2.73	3.03	14,914,220	15,905,060
Oilseeds				
Canola	1.64	2.09	655,470	681,670
Cottonseed ${ }^{3}$			3,901,170	3,848,280
Flaxseed	1.06		145,190	
Mustard Seed	0.65		18,710	
Peanuts	3.84	3.76	2,341,630	1,645,450
Rapeseed	1.68		140	
Safflower	1.78		140,810	
Soybeans for Beans	2.67	2.91	80,748,700	90,335,730
Sunflower	1.60	1.72	1,552,570	1,352,460
Cotton, Tobacco \& Sugar Crops				
Cotton, All ${ }^{2}$	0.91	0.88	2,790,200	2,741,590
Upland	0.90	0.87	2,696,410	2,661,680
Amer-Pima	1.37	1.35	93,800	79,900
Sugarbeets	59.88	57.37	24,346,120	26,712,050
Sugarcane	71.29	76.48	25,041,020	26,390,000
Tobacco	2.53	2.58	363,100	369,210
Dry Beans, Peas \& Lentils				
Austrian Winter Peas	1.46	1.64	4,720	7,100
Dry Edible Beans	1.98	1.95	1,159,290	1,141,960
Dry Edible Peas	1.62	2.33	556,560	788,250
Lentils	1.03	1.61	108,540	264,310
Wrinkled Seed Peas ${ }^{3}$			26,310	
Potatoes \& Misc.				
Coffee (HI)	1.55	1.42	3,950	3,630
Ginger Root (HI)	33.63		820	
Hops	2.21	2.26	36,570	36,690
Peppermint Oil	0.10		2,490	
Potatoes, All^{2}	44.44	46.39	18,826,580	19,601,130
Winter	25.78	27.47	114,760	96,710
Spring	32.80	32.56	913,170	967,290
Summer	34.31	38.78	626,180	667,010
Fall	46.02	48.03	17,172,460	17,870,130
Spearmint Oil	0.13		1,090	
Sweet Potatoes	21.25		836,560	
Taro (HI) ${ }^{3}$			1,950	1,810

${ }^{1}$ Data are the latest estimates available, either from the current report or from previous reports. Current year estimates are for the full 2009 crop year.
${ }^{2}$ Production may not add due to rounding.
${ }^{3}$ Yield is not estimated.

Fruits and Nuts Production, United States, 2008-2010

$\text { (Domestic Units) }^{1}$				
Crop	Units	Production		
		2008	2009	2010
		1,000	1,000	1,000
Citrus ${ }^{2}$				
Grapefruit	Tons	1,548	1,331	1,211
Lemons	"	619	950	855
Oranges	"	10,076	9,198	8,200
Tangelos (FL)	"	68	52	45
Tangerines and Mandarins	"	527	443	504
Noncitrus				
Apples	1,000 Lbs	9,769.3	10,016.0	
Apricots	Tons	81.6	75.3	
Bananas (HI)	Lbs	17,400.0		
Grapes	Tons	7,303.3	7,021.0	
Olives (CA)	"	66.8	50.0	
Papayas (HI)	Lbs	33,500.0		
Peaches	Tons	1,133.3	1,078.3	
Pears	"	870.9	935.3	
Prunes, Dried (CA)	"	129.0	170.0	
Prunes \& Plums (Ex CA)	"	15.5	18.3	
Nuts \& Misc.				
Almonds (CA) (shelled)	Lbs	1,630,000	1,350,000	
Hazelnuts (OR) (in-shell)	Tons	32.0	38.0	
Pecans (in-shell)	Lbs	193,890	301,200	
Walnuts (CA) (in-shell)	Tons	436.0	415.0	
Maple Syrup	Gals	1,912	2,327	

${ }^{1}$ Data are the latest estimates available, either from the current report or from previous reports. Current year estimates are for the full 2009 crop year, except citrus which is for the 2009-10 season.
${ }^{2}$ Production years are 2007-08, 2008-09, and 2009-10.

Fruits and Nuts Production, United States, 2008-2010
(Metric Units) ${ }^{1}$

Crop	Production		
	2008	2009	2010
	Metric tons	Metric tons	Metric tons
Citrus ${ }^{2}$			
Grapefruit	1,404,320	1,207,460	1,098,600
Lemons	561,550	861,830	775,640
Oranges	9,140,790	8,344,290	7,438,910
Tangelos (FL)	61,690	47,170	40,820
Tangerines and Mandarins	478,090	401,880	457,220
Noncitrus			
Apples	4,431,280	4,543,180	
Apricots	74,040	68,270	
Bananas (HI)	7,890		
Grapes	6,625,410	6,369,340	
Olives (CA)	60,600	45,360	
Papayas (HI)	15,200		
Peaches	1,028,120	978,250	
Pears	790,020	848,490	
Prunes, Dried (CA)	117,030	154,220	
Prunes \& Plums (Ex CA)	14,060	16,600	
Nuts \& Misc.			
Almonds (CA) (shelled)	739,360	612,350	
Hazelnuts (OR) (in-shell)	29,030	34,470	
Pecans (in-shell)	87,950	136,620	
Walnuts (CA) (in-shell)	395,530	376,480	
Maple Syrup	9,560	11,630	

${ }^{1}$ Data are the latest estimates available, either from the current report or from previous reports. Current year estimates are for the full 2009 crop year, except citrus which is for the 2009-10 season.
${ }^{2}$ Production years are 2007-08, 2008-09, and 2009-10.

Cotton: Objective Yield Data

The National Agricultural Statistics Service conducted objective yield surveys in 6 cotton producing States during 2009. Randomly selected plots in cotton fields were visited monthly from August through harvest to obtain specific counts and measurements. Data in this table are actual field counts from this survey.

Cotton: Cumulative Boll Counts, Selected States, 2005-2009 ${ }^{1}$

State	Month	2005	2006	2007	2008	2009
AR		Number	Number	Number	Number	Number
	Sep	811	859	790	943	1,051
	Oct	728	814	839	810	814
	Nov	733	849	849	852	803
	Dec	733	824	849	846	794
	Final	733	824	849	846	
GA	Sep	667	648	616	587	571
	Oct	689	675	570	613	731
	Nov	767	774	707	733	712
	Dec	767	790	708	742	737
	Final	767	790	708	742	
LA	Sep	746	760	796	655	714
	Oct	768	781	808	578	792
	Nov	775	786	841	579	756
	Dec	775	785	841	579	788
	Final	775	785	841	579	
MS	Sep	818	700	819	909	925
	Oct	729	699	745	679	833
	Nov	724	695	747	728	717
	Dec	722	695	747	722	722
	Final	722	695	747	722	
NC	Sep	799	637	527	667	701
	Oct	693	641	601	652	730
	Nov	721	671	625	702	779
	Dec	721	671	625	704	777
	Final	721	671	625	704	
TX	Sep	620	530	602	633	613
	Oct	516	477	538	513	522
	Nov	586	533	631	579	502
	Dec	585	544	632	573	502
	Final	585	544	632	573	

${ }^{1}$ Includes small bolls (less than one inch in diameter), large unopened bolls (at least one inch in diameter), open bolls, partially opened bolls, and burrs per 40 feet of row. November, December, and Final exclude small bolls.

2009 Potato Objective Yield Data

The National Agricultural Statistics Service is conducting objective yield surveys in 7 fall potato producing States during 2009. These 7 States account for 83 percent of the fall potato production. Sample plots were located in potato fields randomly selected using a scientifically designed sampling procedure. Field workers recorded counts and measurements within the field and then harvested six hills per sample. Potatoes were sent to laboratories for sizing and grading according to accepted U.S. fresh grading standards.

Fall Potatoes: Number of Hills by Type, Seven Objective Yield States, 2008-2009 ${ }^{12}$									
State	Crop Year	Reds		Whites		Yellows		Russets	
		Number of Samples	Avg No. Hills per Acre	Number of Samples	Avg No. Hills per Acre	Number of Samples	Avg No. Hills per Acre	Number of Samples	Avg No. Hills per Acre
ID	2008			10	12,682			270	12,536
	2009	5	17,938	9	12,142			253	12,940
ME	2008	8	13,785	50	12,655	9	13,228	69	9,603
	2009	6	14,873	40	13,807	9	15,617	61	9,638
MN	2008	43	13,278	8	11,854			83	12,309
	2009	43	12,314	8	13,507			89	13,446
ND	2008	16	11,499	25	11,743			88	12,311
	2009	21	10,403	18	9,660			87	12,166
OR	2008			24	14,555	7	13,136	91	13,591
	2009			22	13,575			103	13,549
WA	2008	5	15,012	24	14,600			129	14,852
	2009	12	16,779	11	15,779	4	16,892	142	14,612
WI	2008	17	14,957	35	15,077			77	12,693
	2009	8	14,288	47	14,514			66	12,678

${ }^{1}$ Based on row measurements and counts in potato fields selected for objective yield samples.
${ }^{2}$ Missing data represents insufficient number of samples.

Fall Potatoes: Harvest Loss by Type, Seven Objective
Yield States, 2008-2009 ${ }^{12}$

State	Crop Year	Reds	Whites	Yellows	Russets	All Types
ID		Cwt per Acre	Cwt per Acre	$\begin{array}{rr}\text { Cwt per Acre } \\ & \\ & 11\end{array}$	Cwt per Acre	Cwt per Acre
	2008		22		31	30
	2009		17		27	26
ME	2008	10	23	10	20	20
	2009	25	25	13	23	23
MN	2008	15	21		25	21
	2009	12	17	15	23	20
ND	2008	14	18		32	27
	2009	23	16		31	28
OR	2008		20	8	35	31
	2009		15		27	25
WA	2008	12	14		24	22
	2009		15		26	25
WI	2008	7	10		10	10
	2009	9	16		16	15

${ }^{1}$ Potatoes left in the field at time of harvest. Based on counts in potato fields selected for postharvest samples.
${ }^{2}$ Missing data represents insufficient number of samples.

Fall Potatoes: Grading Categories by Type and State,

2008-2009 ${ }^{1}$						
Type and State	No. 1 2 Inch Minimum ${ }^{2}$		No. 2 or Processing Usable $11 / 2$ Inch Minimum ${ }^{2}$		Cull ${ }^{3}$	
	2008	2009	2008	2009	2008	2009
	Percent	Percent	Percent	Percent	Percent	Percent
Round Red Potatoes						
MN	76.7	77.4	17.0	13.4	6.4	9.2
ND	81.4	86.7	14.7	8.9	4.0	4.4
WI	76.5		23.3		0.2	
Round White Potatoes						
ME ${ }^{4}$	76.3	72.9	11.9	15.7	11.7	11.4
ND	85.6	76.9	9.2	7.2	5.3	15.9
OR	85.0	82.6	9.1	8.5	5.9	8.9
WI	73.0	81.1	26.8	15.4	0.2	3.5
Long Potatoes						
(Russet and Shepody)						
ME ${ }^{4}$	70.3 65.5	76.6 69.8	20.6 20.0	17.3 19.2	9.0 14.5	6.1 11.0
MN	72.9	79.9	21.0	15.0	6.1	5.1
ND	76.5	77.7	18.3	17.6	5.2	4.7
OR	77.1	79.6	18.0	15.8	4.9	4.6
WA	80.3	80.6	15.6	15.2	4.1	4.2
WI	84.2	86.2	15.6	13.5	0.1	0.3

${ }^{1}$ Gross yield basis. Missing data represents insufficient number of samples. 2008 totals may not add to 100 due to rounding.
${ }^{2}$ Potatoes which meet the requirements for US \#1 or US \#2, as stated in United States Standards for Grades of Potatoes, United States Department of Agriculture, Agricultural Marketing Service.
${ }^{3}$ Potatoes not meeting the requirements for US \#1 or US \#2, as stated in United States Standards for Grades of Potatoes, United States Department of Agriculture, Agricultural Marketing Service.
${ }^{4}$ Percent of net yield - adjusted for field loss.
${ }^{5}$ Russets only.

Round Potatoes: Size Categories by Type and State, 2008-2009 ${ }^{12}$

Year Type State and	Inches						
	$\begin{array}{r} 11 / 2 \\ - \\ 17 / 8 \\ \hline \end{array}$	$\begin{gathered} \hline 17 / 8 \\ - \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ - \\ 21 / 4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 4 \\ - \\ 21 / 2 \\ \hline \end{gathered}$	$\begin{gathered} 21 / 2 \\ - \\ 31 / 2 \\ \hline \end{gathered}$	$\begin{gathered} 31 / 2 \\ - \\ 4 \\ \hline \end{gathered}$	4 Inch and over
2008	Percent						
Red Potatoes MN ND WI	$\begin{aligned} & 4.6 \\ & 3.3 \\ & 9.2 \end{aligned}$	3.3 3.4 6.9	$\begin{aligned} & 11.0 \\ & 10.3 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 18.4 \\ & 18.3 \\ & 26.3 \end{aligned}$	$\begin{aligned} & 60.8 \\ & 62.8 \\ & 36.9 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 0.5 \end{aligned}$	
White Potatoes $M E^{3}$ ND OR WI	$\begin{aligned} & 0.5 \\ & 4.6 \\ & 3.0 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.8 \\ & 4.5 \\ & 4.2 \end{aligned}$	$\begin{array}{r} 11.9 \\ 12.4 \\ 9.3 \\ 11.0 \end{array}$	$\begin{aligned} & 19.7 \\ & 18.3 \\ & 17.0 \\ & 13.2 \end{aligned}$	$\begin{aligned} & 59.6 \\ & 56.2 \\ & 49.9 \\ & 60.0 \end{aligned}$	$\begin{array}{r} 3.0 \\ 4.0 \\ 15.0 \\ 5.8 \end{array}$	$\begin{aligned} & 1.2 \\ & 0.8 \\ & 1.2 \\ & 1.5 \end{aligned}$
2009							
Red Potatoes MN ND WI	$\begin{aligned} & 5.2 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	11.3 10.0	$\begin{aligned} & 20.3 \\ & 17.2 \end{aligned}$	58.7 63.6	$\begin{aligned} & 0.8 \\ & 1.7 \end{aligned}$	
White Potatoes $M E^{3}$ ND OR WI	$\begin{aligned} & 3.7 \\ & 3.1 \\ & 2.2 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.2 \\ & 4.3 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 13.1 \\ & 10.6 \\ & 10.9 \\ & 10.3 \end{aligned}$	$\begin{array}{r} 20.3 \\ 15.2 \\ 9.1 \\ 17.1 \end{array}$	$\begin{aligned} & 53.8 \\ & 61.0 \\ & 55.9 \\ & 61.0 \end{aligned}$	$\begin{array}{r} 2.6 \\ 5.4 \\ 12.8 \\ 5.0 \end{array}$	$\begin{aligned} & 1.2 \\ & 0.5 \\ & 4.8 \\ & 0.1 \end{aligned}$

${ }^{1}$ Gross yield basis. 2008 totals may not add to 100 due to rounding.
${ }^{2}$ Missing data represents insufficient number of samples.
${ }^{3}$ Percent of net yield - adjusted for field loss.

Long Potatoes (Russet \& Shepody): Size Categories Maine, 2008-2009 ${ }^{1}$

Crop Year	Inches		Ounce					
	$\begin{gathered} 11 / 2 \\ - \\ 17 / 8 \end{gathered}$	$\begin{gathered} \hline 17 / 8 \\ - \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 2 \mathrm{in} . \\ \text { or } \\ 4-6 \\ \hline \end{gathered}$	6-8	8-10	10-12	12-14	14 and Over
	Percent							
2008	5.5	7.1	33.2	19.6	12.6	8.3	5.9	7.8
2009	7.0	7.4	40.8	20.0	10.9	5.8	3.5	4.6

${ }^{1}$ Percent of net yield - adjusted for field loss.

Long Potatoes (Russet \& Shepody): Size Categories by State, 2008-2009 ${ }^{1}$													
State and Year	Inches			Ounce									
	$\begin{gathered} 11 / 2 \\ - \\ 15 / 8 \\ \hline \end{gathered}$	$\begin{gathered} 15 / 8 \\ - \\ 17 / 8 \\ \hline \end{gathered}$	$\begin{gathered} 17 / 8 \\ - \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 2 \mathrm{in} . \\ \text { or } \\ 4-6 \end{gathered}$	6	7	8	9	10	11	12	13	14 and Over
	Percent												
2008													
ID ${ }^{2}$	1.3	6.2	5.2	26.4	9.7	8.5	7.5	7.1	5.3	4.2	3.7	3.0	11.9
MN	2.4	8.5	5.4	29.0	10.5	9.1	8.3	6.0	5.3	4.5	2.9	1.8	6.3
ND	1.0	5.7	3.9	24.9	11.1	10.0	9.4	7.4	5.7	4.5	3.0	3.2	10.3
OR	1.4	4.9	3.9	24.5	10.8	8.8	7.2	8.0	5.8	5.5	3.9	3.4	12.1
WA	0.6	3.5	3.3	24.7	10.3	9.6	8.4	7.7	6.5	5.2	4.3	3.2	12.7
WI	0.6	6.0	5.6	32.0	11.6	8.9	7.6	6.6	5.0	4.4	3.4	2.5	5.7
2009													
ID ${ }^{2}$	1.2	6.3	5.5	29.2	10.8	9.5	7.5	6.8	5.3	3.6	3.1	2.4	8.8
MN	1.3	5.1	4.4	25.3	11.0	10.1	8.9	7.6	7.0	4.6	3.5	2.5	8.7
ND	0.9	6.2	5.1	29.2	10.4	10.3	8.9	6.9	5.4	3.4	3.5	2.2	7.6
OR	1.2	4.0	3.6	22.4	9.2	8.0	7.6	6.5	7.1	5.3	4.4	4.3	16.4
WA	0.5	2.8	3.0	21.7	9.6	8.8	8.4	7.2	6.8	5.5	5.1	3.7	16.9
WI	0.9	4.3	4.4	29.3	10.9	9.3	7.3	6.7	6.3	4.4	3.8	2.4	10.0

[^4]

November Weather Summary

In a complete reversal from October, mild, mostly dry weather prevailed across much of the Nation during November. In fact, November temperatures averaged more than 10 degrees Fahrenheit above normal at a few locations in the north-central U.S., while near- to slightly below-normal readings were confined to the Deep South and the Pacific Northwest. Warmth was favorable for winter grains, but especially beneficial for the emergence and establishment of late-planted soft red winter wheat from the Delta into the Ohio Valley and the lower Great Lakes region.

Following the Nation's wettest October on record, large areas of the country received little precipitation during November. One exception was the Southeast, from Alabama into the southern Mid-Atlantic States, where the remnants of Hurricane Ida and several non-tropical storms disrupted cotton harvesting and other late-autumn fieldwork.

Farther west, however, dry weather for much of November in the lower Mississippi Valley allowed harvest activities to near completion. More than half (55 percent) of the Nation's cotton was harvested from November 2-29, compared to the 5 -year average of 32 percent, but more than three-quarters of the cotton was harvested during November in Mississippi, Tennessee, and Arkansas.

Meanwhile, lingering wetness in the middle Mississippi Valley and the upper Midwest maintained a slow summer crop harvest pace. Nevertheless, more than half (54 percent) of the U.S. corn crop was harvested during the 4 weeks ending November 29, compared to the 5-year average of 26 percent. Still, the National corn harvest was just 79 percent complete by November 29, representing the least amount of progress on that date since 1992 (75 percent).

On the northern and southern Plains, November fieldwork activities advanced with few delays under mild, dry conditions. Dryness became a concern, however, for a portion of the southern Plains' winter wheat crop. Rain and snow caused some fieldwork delays on the central Plains, although harvest activities for crops such as corn, sorghum, and sunflowers proceeded between storms.

Elsewhere, mild, mostly dry weather promoted cotton harvesting and other autumn fieldwork in California and the Southwest, while stormy conditions affected the Pacific Northwest. At times, precipitation spread far enough inland to benefit Northwestern winter grains.

November Agricultural Summary

Temperatures throughout the month of November were warmer than normal for much of the country, reaching as many as 9 degrees above average in the northern Great Plains and Minnesota. Drier weather blanketed much of the Great Plains, Midwest, and Delta, promoting the rapid harvest of corn and soybeans and the seeding of over-wintered small grains. Elsewhere, excessive precipitation in areas of the Southeast hampered peanut and cotton harvest and caused lodging in some unharvested cotton fields.

As the month began, maturity in this year's corn crop had advanced to 94 percent complete, 5 points behind the 5 -year average, while producers had harvested one-quarter of the crop, 46 points, or 1 month, behind the average. Harvest delays of 3 weeks or more were evident in the 6 largest corn-producing States, with progress in Illinois over 5 weeks behind normal. Above average temperatures and drier weather provided ideal harvest conditions across much of the major corn-producing regions during the first half of the month as producers combined 29 percent of the Nation's crop from November 2 to November 15. Despite the return of wet weather to much of the Corn Belt during the week ending November 22, harvest progress remained active. By November 29, harvest had advanced to 79 percent complete, 15 points behind last year and 18 points, or 23 days, behind the 5 -year average. Overall, 67 percent of the corn crop was reported in good to excellent condition as harvest passed the halfway point during the week ending November 15.

Sorghum acreage at or beyond the mature stage had advanced to 83 percent as November began, 6 points behind last year and 10 points behind the 5 -year average. The most significant maturation delay was evident in Texas where abnormally cool temperatures during October left progress over 1 month behind normal. On November 1, producers had harvested 45 percent of the crop, 23 points behind the average. By November 15 , the sorghum crop was mature in all estimating States except Illinois, Nebraska, Oklahoma, and Texas. During the last 2 weeks of November, producers harvested 19 percent of their sorghum crop, ending the month with 87 percent of the crop harvested, 6 points behind both last year and the 5-year average.

By November 1, winter wheat producers had seeded 79 percent of the 2010 crop and emergence had advanced to 64 percent, both 11 points behind the 5-year average. Excessive rainfall in Arkansas early in the month halted
fieldwork, while dry conditions in California allowed seeding to advance at a rapid pace. Producers in the Corn Belt rapidly seeded winter wheat following the harvest of their soybeans. By November 29, seeding had advanced to 96 percent complete, 2 points behind both last year and the 5 -year average, while emergence was evident in 89 percent of winter wheat fields. Overall, 63 percent of the winter wheat crop was reported in good to excellent condition on November 29, down slightly from ratings at the start of the month.

Rice producers were busy harvesting the last of their crop as the month began, with progress complete or nearly complete in California, Louisiana, and Texas. By November 8, ninety-six percent of the Nation's crop was harvested, 3 points behind last year and 2 points behind the 5-year average.

By November 1, soybean producers had harvested 51 percent of the 2009 crop, 34 points behind last year and 36 points, or over 3 weeks, behind the 5 -year average. Due to persistent rainfall and mostly below average temperatures during October, all 18 major soybean-producing States except North Carolina were experiencing harvest delays as the calendar rolled to November. Warmer temperatures and mostly dry weather early in the month promoted a significant amount of fieldwork and allowed producers to harvest 38 percent of their crop from November 2 to November 15. Harvest reached 96 percent complete on November 29, two points behind both last year and the 5 -year average. Overall, 63 percent of the soybean crop was reported in good to excellent condition as harvest surpassed the halfway point during the week ending November 1.

Fifteen percent of the sunflower crop was harvested by November 1, thirty-one points behind last year and 42 points, or over 2 weeks, behind the 5 -year average. Harvest was active but slow in the 4 largest sunflower-producing States as above average precipitation limited fieldwork to 3 days or less. The harvest pace gained speed as warmer temperatures and drier weather settled into the Great Plains during the first half of the month. On November 15, harvest had advanced to 59 percent complete, 16 points behind last year and 27 points behind the average. By November 29, harvest was nearing completion in the Dakotas, but overall progress was behind normal in all estimating States.

With 56 percent of the peanut crop harvested by November 1, progress was 21 points behind last year and 19 points behind the 5 -year average. Harvest was active throughout the major growing regions during the week ending November 8, with producers in Alabama, Florida, Georgia, and Texas, the 4 largest peanut-producing States, harvesting 14 percent or more of their crop. Tropical Storm Ida came ashore mid-month, dumping above average precipitation on much of the Southeast and slowing harvest progress. On November 29, harvest had advanced to 92 percent complete, 7 points behind last year and 6 points behind the average. Progress was complete or ahead of normal in all estimating States except Alabama, Florida, and Georgia. The most significant delay remained in Alabama where progress was over 1 month behind normal. Overall, 66 percent of the peanut crop was reported in good to excellent condition as harvest passed the halfway point during the week ending November 1.

November began with 8 percent of this year's cotton acreage still with closed bolls. A lack of available heat units stalled progress in Texas, the largest cotton-producing State, as the bolls on the tops of the plants struggled to open. By November 1, producers had harvested 28 percent of the crop, 17 points behind last year and 22 points, or just over 3 weeks, behind the 5-year average. Above average rainfall across the Delta and in Tennessee early in the month pushed progress even further behind normal. The harvest pace gained speed as warmer, drier weather settled over the major cotton-producing regions during the latter half of the month. By November 29, eighty-three percent of the crop was harvested, 2 points ahead of last year and 1 point ahead of the 5 -year average. Overall, 40 percent of the cotton crop was reported in good to excellent condition as harvest passed the halfway point during the week ending November 15, down 2 points from ratings at the beginning of the month.

Producers in the 4 major sugarbeet States dug 17 percent of the Nation's crop from November 1 to November 15, leaving progress, at 98 percent, on par with last year but 1 point behind the 5 -year average. Harvest was complete in Idaho, but lagged normal in the Red River Valley.

Crop Comments

Cotton: Upland cotton harvested area, at 7.59 million acres, is unchanged from last month but up 3 percent from last year. American-Pima harvested area, at 146,200 , was carried forward from the August forecast.

In the Southeastern region, farmers made rapid harvest progress during the first part of the month. However, heavy rains in the middle of the month slowed progress, and by the end of the month harvest was behind last year and normal. In Georgia, objective yield measurements indicated boll weights to be the largest on record.

During the early part of November, Delta producers made significant harvest progress due to ideal weather, but progress was still behind last year and normal. By month's end, harvest was nearing completion. Objective yield data for Louisiana showed the boll weight to be the lowest in the last 10 years but bolls per acre the second highest for the same time frame. In Arkansas, objective yield measurements showed bolls per acre to be slightly below average while boll weight was slightly above average. In Mississippi, the boll weights are the highest in the last 10 years.

Ideal weather during the month allowed Texas producers to harvest their crop without interruptions. Unlike most of the Cotton Belt, harvest in Texas was ahead of normal. Objective yield measurements in Texas showed bolls per acre to be the lowest in the last 5 years. In Kansas and Oklahoma, harvest was behind last year and normal.

In California, upland cotton harvest was slightly behind last year and normal. In Arizona, cotton harvest was well ahead of last year and slightly ahead of normal.

The American-Pima production forecast was carried forward from the August forecast, at 367,000 bales, down 15 percent from last year. The U.S. yield is forecast at 1,205 pounds per harvested acre, down 21 pounds from last year.

Ginnings totaled $7,873,550$ running bales prior to December 1 , compared with $8,927,600$ running bales ginned prior to the same date last year and 12,592,650 running bales in 2007.

Papayas: Hawaii fresh papaya production is estimated at 2.59 million pounds for October 2009, up 8 percent from September but 16 percent lower than October 2008. Total crop area for October is estimated at 1,970 acres, down 5 percent from September and 15 percent below October 2008. Harvested area totaled 1,310 acres, unchanged from the previous month but 7 percent lower than last year. Weather during October in the major papaya growing areas was mostly sunny with occasional showers. The favorable weather conditions allowed growers to perform usual field maintenance and planting activities. Papaya growers reported the crop was in good condition.

Fall Potatoes: Production of fall potatoes for 2009 is forecast at 394 million cwt, up 1 percent from the November forecast and 4 percent from last year. Area harvested, at 919,400 acres, is slightly below the November forecast and 2008 estimate. The average yield, forecast at 429 cwt per acre, is up 3 cwt per acre from November's forecast and up 18 cwt per acre from last year. If realized, it will be the highest yield on record.

Idaho's yield is forecast at 411 cwt per acre. If realized, this will be Idaho's highest yield on record, 25 cwt above the record yield set in 2006. Production in Idaho is up 13 percent from last year. In eastern Washington, potato harvest was virtually completed by late November. Despite weather delays, harvest progress was the same as last year's pace and the 5 -year average. In Colorado, growing conditions were favorable in the San Luis Valley, however, an early frost and disease led to increase abandonment this year. Oregon's crop had a normal start without any widespread delays during planting. In California, favorable weather conditions aided yields and resulted in good crop quality reports from growers.

In North Dakota, crop condition was rated fair to good throughout the growing season. Wisconsin growers reported above average crop conditions and good quality. Cool temperatures and timely rain provided good growing conditions for Michigan potatoes.

In Maine, cool, dry conditions aided growers with an early start to potato planting. Warm weather was welcomed in mid-August, but dry conditions continued into mid-September, preventing tubers from increasing in size.

All Potatoes: Total U.S. potato production in 2009 from all four seasons is forecast at 432 million cwt, up 1 percent from the November forecast and 4 percent from last year. Harvested area, at 1.04 million acres, is virtually unchanged from last month's forecast and last year. Yield is forecast at 414 cwt per acre, up 3 cwt from last month and 18 cwt from the previous year record high of 396 cwt per acre.

Dry Beans: U.S. dry edible bean production is forecast at 25.2 million cwt for 2009, virtually unchanged from the October 1 forecast but 1 percent below 2008. Planted area is forecast at 1.53 million acres, up slightly from the October forecast and 3 percent above 2008. Harvested area is forecast at 1.45 million acres, 1 percent above the October forecast but virtually unchanged from the previous year's acreage. The average U.S. yield is forecast at 1,737 pounds per acre, a decrease of 17 pounds from October's forecast and 31 pounds below the 2008 yield.

Production is expected to be higher than last year in 11 of the 17 States in the dry bean estimating program in 2009; however, the top 4 producing States are forecasting a decrease in production. The production forecast in North Dakota, the largest producing State, is down 17 percent from a year ago, while Michigan dropped 3 percent from 2008. Minnesota and Nebraska's production is expected to be down 11 percent and 15 percent, respectively.

In North Dakota, planting was delayed due to saturated fields and cool temperatures. Harvest began in mid-September, about two weeks behind the 5-year average, and was essentially complete by mid-November. In Nebraska, hail and cool temperatures early in the growing season left the crop susceptible to disease pressure. As a result, some reduced yields and low quality beans were reported. Excessive moisture and cold weather slowed Minnesota's dry bean maturation and harvest. Several growers reported leaving acres in the fields or tilling them under.

Grapefruit: The forecast of the 2009-10 U.S. grapefruit crop is 1.21 million tons, unchanged from the October 1 forecast but down 9 percent from the 2008-09 final utilization.

Florida's grapefruit production is forecast at 19.8 million boxes (842,000 tons), unchanged from the October forecast but 9 percent below last season. The Florida all white grapefruit forecast is 5.80 million boxes (247,000 tons), down 12 percent from the previous year. The colored grapefruit forecast, at 14.0 million boxes (595,000 tons), is 7 percent lower than last season. Size and drop of both varieties are expected to be below average at harvest. California and Texas grapefruit production estimates are carried forward from the October forecast.

Tangelos: Florida's tangelo forecast is 1.00 million boxes (45,000 tons), unchanged from the October 1 forecast but down 13 percent from last season's final production. Bearing trees are down nearly 2 percent from last season and fruit per tree is down 30 percent. The size of the fruit and the drop rate are both below average.

Tangerines and Mandarins: The U.S. tangerine and mandarin crop is forecast at 504,000 tons, down 1 percent from the October 1 forecast but up 14 percent from the 2008-09 season. Florida's tangerine crop is forecast at 4.80 million boxes (228,000 tons), down 2 percent from the October 1 forecast but up 25 percent from the previous season. Arizona and California tangerine and mandarin production forecasts are carried forward from October.

Florida Citrus: Temperatures were close to average for the month in all citrus producing counties. Rainfall was less than an inch in most of the monitored stations. Overall, the weather was beneficial to citrus progress.

Harvesting of Fallglo tangerines and Ambersweet oranges was nearly complete for the season. Weekly navel orange harvesting began to taper off near the end of the month. Shipment of fresh fruit was slow, due in part to small fruit sizes, but was expected to increase slightly with the start of fundraising programs.

Most of the processing plants were open in November. With continued good weather, the processing pace is expected to increase in the next 2 weeks. Grove activity included limited herbicide applications and mowing. Grove caretakers also continued to survey groves for greening, remove affected trees, and spray trees for citrus psyllid control.

California Citrus: Valencia orange harvest was completed in November. Naval orange harvest began early in the month. Satsuma and Clementine mandarins and Oro Blanco grapefruit were picked in the San Joaquin Valley. Throughout the month, the navel orange harvest continued to pick up in the Central Valley and fruit showed good progress and sugar content. The lemon harvest continued in the desert region. Normal spraying and maintenance continued in citrus orchards which included fall pruning.

California Noncitrus Fruits and Nuts: The wine and raisin grape harvests in the Central Valley were completed as minor picking continued in table grape vineyards. Warm weather and light winds created good ripening and picking conditions for grapes in Napa County. Weeds were being cleared in vineyards and vine stripping began in harvested vineyards to accommodate spraying.

Minor picking of Pink Lady apples continued in the Central Valley. The peach, plum, and nectarine harvests were completed. Pomegranates continued to be picked in the San Joaquin Valley. The kiwi fruit harvest wound down as the season approached its end. Plantings of strawberries and blueberries were ongoing for next year. Normal spraying and maintenance continued in fruit orchards, which included fertilizer applications, tree pruning, and pre-emergent spray applications.

The almond harvest was completed at the start of the month as final hulling and stockpile fumigations continued. The walnut, pecan, and pistachio harvests continued and were near completion in the Central Valley. Pruning and maintenance of harvested nut orchards continued, including some applications of zinc sulfate to almond orchards.

Pecans: Production is forecast at 301 million pounds (utilized, in-shell basis), down 3 percent from the October forecast but 55 percent above the 2008 production. All States in the pecan estimating program have a higher production of improved pecans forecasted when compared with last year; however, the native pecan crop production declined from 2008 in several States. Nationally, improved varieties are expected to produce 252 million pounds or 84 percent of the total, while native and seedling varieties, at 49.5 million pounds, make up the remaining 16 percent of production. The 2009 crop is expected to be larger than last year's mainly due to the alternate bearing pattern typical of pecans.

In Georgia, production is forecast at 85.0 million pounds, 21 percent above last year but down 5 percent from the October forecast. Although this is the "up" year in the alternate bearing cycle, frequent rain throughout the summer produced widespread disease problems. Fungicide applications were frequently interrupted by showers and cool temperatures.

New Mexico's forecast, at 76.0 million pounds, is up 77 percent from last year but unchanged from the October forecast. Pecan acreage continues to increase in the Rio Grande Valley. Recent precipitation delayed harvest slightly.

The Arizona forecast is 24.0 million pounds, 37 percent above last year, but unchanged from the October forecast. Oklahoma's crop is forecast at 20.0 million pounds, a 300 percent increase from 2008 but unchanged from October's forecast. Producers continued to harvest the crop.

Alabama pecan production is forecast at 10.0 million pounds, down less than one percent from the October forecast but up 25 percent from last year's final production. Frequent rain events resulted in reports of crop disease. Strong winds from tropical storm Ida earlier in the season knocked many nuts out of trees, negatively impacting some yields.

Sugarcane: Production of sugarcane for sugar and seed is forecast at 29.1 million tons, of which 27.6 million tons is expected for sugar and 1.54 million tons for seed. Total production for sugar and seed is down fractionally from the November 1 forecast but up 5 percent from 2008. Producers expect to harvest 852,700 acres for sugar and seed, unchanged from the November forecast but down 2 percent from last year. Decreases in area harvested for sugar and seed are expected in all estimating States except Texas. Expected yield for sugar and seed is forecast at 34.1 tons per acre, down 0.2 ton from November but up 2.3 tons from 2008.

Production forecasts for sugar and seed remained unchanged in Louisiana and Texas but decreased in Florida and Hawaii. Abnormally dry fall conditions in Florida led to an expected decrease in overall production.

Coffee: Hawaii coffee production is estimated at 8.00 million pounds (parchment basis) for the 2009-10 season, down 8 percent from the previous year. Dry weather in Kona along with insect damage and volcanic smoke on the Big Island contributed to the decrease in production.

Puerto Rico coffee production for the $2009-10$ season is estimated at 9.50 million pounds (parchment basis), down 29 percent from the previous season. Heavy rain during the flowering stage, insect damage, and a labor shortage negatively impacted coffee production.

Reliability of December 1 Crop Production Forecast

Cotton Survey Procedures: Objective yield surveys were conducted between November 24 and December 1 to gather information on expected yields as of December 1. The objective yield survey for cotton was conducted in producing States that usually account for approximately 75 percent of the U.S. production. At crop maturity, the fruit is harvested and weighed. After the farm operator has harvested the sample field, another plot is sampled to obtain current year harvesting loss.

Orange Survey Procedures: The orange objective yield survey for the December 1 forecast was conducted in Florida, which produces about 75 percent of the U.S. production. Bearing tree numbers are determined at the start of the season based on a fruit tree census conducted every other year, combined with ongoing review based on administrative data or special surveys. From mid-July to mid-September, the number of fruit per tree is determined. In September and subsequent months, fruit size measurement and fruit droppage surveys are conducted, which combined with the previous components are used to develop the current forecast of production. California and Texas conduct grower and packer surveys on a quarterly basis, in October, January, April, and July. California conducts an objective measurement survey in September for navel oranges and in March for Valencia oranges.

Cotton Estimating Procedures: National and State level objective yield estimates for cotton were reviewed for errors, reasonableness, and consistency with historical estimates. For cotton, reports from cotton ginners in each State were also considered. Each cotton State Field Office submits its analysis of the current situation to the Agricultural Statistics Board (ASB). The ASB uses the survey data and the State analyses to prepare the published December 1 forecast.

Orange Estimating Procedures: State level objective yield estimates for Florida oranges were reviewed for errors, reasonableness, and consistency with historical estimates. The Florida Field Office submits its analysis of the current situation to the Agricultural Statistics Board (ASB). The ASB uses the Florida survey data and their analyses to prepare the published December 1 forecast. Reports from growers and packers in California and Texas were also used for setting estimates. The December 1 orange production forecasts for these three States are carried forward from October.

Revision Policy: The December 1 production forecasts will not be revised. For cotton, a new estimate will be made in January followed by end-of-season revisions in May. Administrative records are reviewed and revisions are made, if data relationships warrant changes. Harvested acres may be revised any time a production forecast is made, if there is strong evidence that the intended harvested area has changed since the last estimate.

For oranges, the December 1 production forecasts will not be revised. A new forecast will be made each month throughout the growing season. End-of-season estimates will be published in the Citrus Fruits Summary released in September. The production estimates are based on all data available at the end of the marketing season, including information from marketing orders, shipments, and processor records. Allowances are made for recorded local utilization and home use.

Reliability: To assist users in evaluating the reliability of the December 1 production forecasts, the "Root Mean Square Error," a statistical measure based on past performance, is computed. The deviation between the December 1 production forecast and the final estimate is expressed as a percentage of the final estimate. The average of squared percentage deviations for the latest 20 -year period is computed. The square root of the average becomes statistically the "Root Mean Square Error." Probability statements can be made concerning expected differences in the current forecast relative to the final end-of-season estimate, assuming that factors affecting this year's forecast are not different from those influencing recent years.

The "Root Mean Square Error" for the December 1 cotton production forecast is 1.9 percent. This means that chances are 2 out of 3 that the current cotton production forecast will not be above or below the final estimate by more than 1.9 percent. Chances are 9 out of 10 (90 percent confidence level) that the difference will not exceed 3.7 percent.

Changes between the December 1 cotton forecast and the final estimates during the past 20 years have averaged 225,000 bales, ranging from 40,000 to 785,000 bales. The December 1 forecast for cotton has been below the final estimate 12 times and above 8 times. The difference does not imply that the December 1 forecasts this year are likely to understate or overstate final production.

The "Root Mean Square Error" for the December 1 orange production forecast is 7.5 percent. However, if you exclude the six abnormal production years (three freeze seasons and two hurricane seasons), the "Root Mean Square Error" is
3.6 percent. This means that chances are 2 out of 3 that the current orange production forecast will not be above or below the final estimate by more than 7.5 percent, or 3.6 percent excluding abnormal seasons. Chances are 9 out of 10 (90 percent confidence level) that the difference will not exceed 13.0 percent, or 6.3 percent excluding abnormal seasons.

Changes between the December 1 orange forecast and the final estimates during the past 20 years have averaged 490,000 tons (330,000 tons excluding abnormal seasons), ranging from 17,000 tons to 2.02 million tons (17,000 tons to 764,000 tons, excluding abnormal seasons). The December 1 forecast for oranges has been below the final estimate 8 times and above 12 times (below 8 times and above 7 times, excluding abnormal seasons). The difference does not imply that the December 1 forecasts this year are likely to understate or overstate final production.

Information Contacts

Listed below are the commodity statisticians in the Crops Branch of the National Agricultural Statistics Service to contact for additional information.
Lance Honig, Chief (202) 720-2127
Field Crops Section
Jacqueline Moore, Head (202) 720-2127
Shiela Corley - Cotton, Cotton Ginnings (202) 720-5944
Bryan Durham - Hay, Oats, Sorghum (202) 690-3234
Anthony Prillaman - Corn, Proso Millet, Flaxseed (202) 720-9526
Suzanne Avilla - Peanuts, Rice (202) 720-7688
Nick Schauer - Wheat, Rye (202) 720-8068
Julie Schmidt - Crop Weather, Barley, Sugar Crops (202) 720-7621
Travis Thorson - Soybeans, Sunflower, Other Oilseeds (202) 720-7369
Fruits, Vegetables \& Special Crops Section Jorge Garcia-Pratts, Head (202) 720-2127
Jorge Garcia-Pratts - Citrus, Coffee, Grapes, Tropical Fruits (202) 720-2127
Debbie Flippin - Fresh and Processing Vegetables, Onions, Strawberries (202) 720-2157
Fred Granja - Apples, Apricots, Cherries, Plums,
Prunes, Tobacco (202) 720-4288
Michael Jacobsen - Berries, Cranberries (202) 720-9085
Dawn Keen - Floriculture, Maple Syrup, Nursery,
Tree Nuts (202) 720-4215
Tierra Mobley - Potatoes, Sweet Potatoes (202) 720-4285
Dan Norris - Austrian Winter Peas, Dry Edible Peas,
Lentils, Mint, Mushrooms, Peaches, Pears, Wrinkled Seed Peas, Dry Beans (202) 720-3250
Kim Ritchie - Hops (360) 902-1940

ACCESS TO REPORTS!!

For your convenience, there are several ways to obtain NASS reports, data products, and services:

INTERNET ACCESS

All NASS reports are available free of charge. For free access, connect to the Internet and go to the NASS Home Page at: www.nass.usda.gov.

E-MAIL SUBSCRIPTION

All NASS reports are available by subscription free of charge direct to your e-mail address. Starting with the NASS Home Page at www.nass.usda.gov, under the right navigation, Receive reports by Email, click on National or State. Follow the instructions on the screen.

PRINTED REPORTS OR DATA PRODUCTS

CALL OUR TOLL-FREE ORDER DESK: 800-999-6779 (U.S. and Canada)
 Other areas, please call 703-605-6220 FAX: 703-605-6880
 (Visa, MasterCard, check, or money order acceptable for payment.)

Abstract

ASSISTANCE For assistance with general agricultural statistics or further information about NASS or its products or services, contact the Agricultural Statistics Hotline at 800-727-9540, 7:30 a.m. to 4:00 p.m. ET, or e-mail: nass@nass.usda.gov.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

[^0]: ${ }^{1}$ Missing data are included in "Other" class to avoid disclosure of individual operations or no data were reported.
 ${ }^{2}$ Estimates began in 2009.
 ${ }^{3}$ Estimates discontinued in 2009.

[^1]: ${ }^{1}$ Missing data are included in "Other" class to avoid disclosure of individual operations or no data were reported.
 ${ }^{2}$ Clean Basis.
 ${ }^{3}$ Includes Light Red Kidney to avoid disclosure of individual operations.

[^2]: ${ }^{1}$ Derived.

[^3]: ${ }^{1}$ Revised from the September preliminary.

[^4]: ${ }^{1}$ Gross yield basis. 2008 totals may not add to 100 due to rounding.
 ${ }^{2}$ Russets only.

